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ABSTRACT

A computer code is developed and tested which simulates the transient
evaporation of a single liquid droplet from the surface of a semi-infinite solid
subject to radiant heat input from above. For relatively low temperature
incident radiation, it is shown that the direct absorption of radiant energy by
the droplet can be treated as purely boundary conditions, while a model for
higher temperature incident radiation would require the addition of constant
heat source terms. The heat equation is numerically coupled between the
liquid and solid domains by using a predictor-corrector scheme. Three one-
dimensional solution schemes are used within the droplet: a start-up semi-
infinite medium solution, a tridiagonal Crank-Nicholson transient solution,
and a steady-state solution. The solid surface temperatures at each time step
are calculated through careful numerical integration of an axisymmetric
Green'’s functions solution equation with the forcing function given by the
past lower droplet surface and solid-vapor boundary heat fluxes. The time
step is increased after a sensitive initial period to allow for reasonable run
times. Two geometry models are included which give the droplet height as a
function of current droplet volume and initial wetted radius; the second
allows inclusion of the effects of initial contact angle and receding angle.
Using water as the liquid and Macor, a low-thermal conductivity material, as
the solid, the program output was compared to the experimental results in
this line of research. They correlate well to the experiments in which the
critical geometric shape factor and evaporation time were most easily

measured.
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FOREWORD

This report describes the research performed during the period September 1992 - August
1993 under a joint research program between the Mechanical Engineering Department of
the University of Maryland at College Park and the Building and Fire Research Laboratory
of the National Institute of Standards and Technology. The research was conducted in the
laboratories of the BFRL by G. White and S. Tinker, Graduate Research Assistants of the
ME Department under the joint supervision of Dr. M. di Marzo (ME Department - UMCP)
and Dr. D. Evans (BFRL - NIST). This report also constitutes the Master Thesis of Mr. G.
White, which has been completed and will be defended in the month of December 1993.
Ms. S. Thinker performed experiments on dropwise evaporation which will be included in
the final report for next grant period. She was also responsible for the formulation of a two-
parameters model for the description of the droplet shape which was used by G.White in
his thesis. Ms. Tinker is currently working on the formulation and validation of a multi-

droplet model for the prediction of sparse spray evaporative cooling.
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1. INTRODUCTION

Because of the very high latent heat of vaporization of water, cooling using
water droplets has many engineering applications. These uses vary from the
quenching of metals and cooling of turbine blades to environmental control
systems. Therefore, cooling of hot surfaces has been the subject of numerous
investigations. Toda [1] and Bonacina [2] designed spray cooling experiments
while more recent work by Inada [3] and Makino [4] studied the evaporation

of single droplets heated from below by conduction.

The theoretical transient single-droplet evaporative cooling computer code
developed by the author was completed under a joint research program
between the Mechanical Engineering Department of the University of
Maryland and the Center for Fire Research of the National Institute of
Standards and Technology. This research has focused on extending the
current body of knowledge on evaporative cooling to the fire safety field.
Previous experimental work [5-9] has investigated the temperature response
of the surface of a semi-infinite solid surrounding a gently deposited water
droplet. The surface may be heated from below by conduction or from above
by radiation, but previous theoretical work [8, 10-12] has focused on the
conduction case. More recent work has focused on measuring [13] or
predicting [14] the surface temperatures of a solid impacted by a random
droplet array. The time for reaching the surface-averaged steady-state
temperature for a surface subject to a sudden droplet array is critical to the
protection of equipment exposed to radiant heat. Therefore, the results of the
single-droplet code presented here will be used in a multi-droplet code. To

reach that goal, the code documented here is designed to output transient



solid surface temperatures and droplet evaporation times for water droplets
of variable size and initial wetted area gently deposited on low-thermal

conductivity semi-infinite solids subject to radiant energy.

1.1 Problem Description

The computer code documented here models the specific experimental
geometry of Dawson [13] as shown in Figure 1. Heating is from above by
three radiant panels operating in a temperature range of from 475-650°C. The
droplet is gently deposited at the center of a semi-infinite solid Macor tile, a
glass-like ceramic resistant to thermal stresses and chosen for its low thermal
conductivity (1.29 W/m-K) and high emissivity of 0.84 [8]. The temperature
profile along a line passing through the droplet center was measured using
infrared thermography data recorded on video tape. Only initial surface
temperatures less than that required for nucleate boiling in the droplet were
allowed (i.e., Tsg < 162°C). Therefore, the droplet véporization process is

exclusively evaporative.

The droplet-solid geometry is shown in Figure 2. An overall energy balance
predicts the amount of energy required to evaporate the droplet but cannot
predict the relative proportions of the heat transfer mechanisms nor the
evaporation time. Energy enters the droplet by conduction from below and
radiation from above and leaves the droplet with the mass evaporated at the
upper surface. A small amount of energy also leaves the upper surface by
natural convection and is quantified using the experimeﬁtally measured
value of h (approximately 10 W/m-K). The Chilton-Colburn analogy will be
used to develop a relationship for the energy leaving by evaporation.

Chapter 2 is devoted to quantifying the energy added to the droplet by
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rad.iatibn. It is shown that the radiation may be assumed to be input
exclusively at the droplet boundaries. The conductive contribution from
below, responsible for the surface cooling effect, requires coupling of the heat
equation in the liquid and solid domains. This is accomplished using a
simple but effective predict-correct method. Surface-tension-induced motion
in the droplet can be neglected because of the very small induced velocities,
and Rayleigh-instability-induced flow is not of concern because of the large
response times. Then, the thin film assumption that conductive heat transfer
in the droplet is one-dimensional in the axial direction is made based on
previous results [15] for the case of heating by conduction from below. This
assumption is true everywhere and at all times except near the droplet edge
where the radial flux component may be as large as 10% of the total flux. The
radiation case droplet tends to be thinner than the conduction case one, so the
assumption can safely be applied to the present problem. The solid domain

is best handled by a Green's function Boundary Element Method (BEM).

1.2 Key Assumptions

The major assumptions used by the computer code are listed in the following:

(1)  Liquid flow and thus convection inside the droplet are negligible.

(2) Conduction in the droplet is one-dimensional in the axial direction.

(3) A semi-infinite solid solution can sufficiently describe the early solid-
liquid interfacial fluxes.

(4)  The direct radiation absorption by the droplet can be sufficiently
described by radiation absorption at the boundaries only.

(5)  The droplet shape may be empirically described by geometry Model A
or B (subsection 3.9): spherical segment shape or pancake shape with
possible shrinkage of the wetted area.



2. SECTION I- RADIATIVE HEAT INPUT MODEL

The evaporative process cools a surface by conducting sensible energy from
the bulk of the solid in order to supply latent heat of vaporization. However,
incident radiative heat flux (e.g. from a nearby fire) can also supply the
needed energy and thus limit the cooling effect. The manner in which the
radiative flux enters the system must affect the transient characteristics of the
evaporative process. For example, radiation absorbed right at the droplet
surface would affect the temperature-sensitive evaporative heat flux more
strongly than radiation absorbed directly by the solid at the solid-liquid
interface. Also radiation incident to the droplet at shallow angles tend to be
reflected away from the solid entirely. Therefore, this section presents a
radiative heat input model of enough detail so as to specify locations at which
the radiation enters tﬁe droplet-solid system but not so complex as to make
the problem extremely computationally intensive. This model is necessary
for the program developed in Chapter 3, which simulates the controlled
laboratory environment, because the overall energy balance provided by the
known initial heat flux in the tile only gives the magnitude of the radiation
absorbed by the tile but not the directions from which the radiation is

incident.

2.1 Derivation of Model Equation

Because of the assumed azimuthal symmetry of the droplet and semi-infinite
solid, the polar angle distribution of the incident radiation and not the
azimuthal distribution is needed. Then, flux incident from polar angle 6 with
wavelength A can be designated Ej . If one makes the assumption that the

liquid-vapor interface is horizontal and flat, then the radiative flux is only a



function of the depth z below the interface and not also of the radial position
and current droplet shape. The droplet surface normal need not be
calculated as a function of radial position and time. This assumption may be
reasonable because the droplet is usually rather thin. Two additional
assumptions are also made now: radiation scattering within the droplet is
negligible and radiation reaching the liquid-solid interface is completely
absorbed by the solid. Then with the effects of projected area, surface
reflection, and absorption inside the droplet, the heat flux at a depth z below

the droplet surface due to Ej g is

Fy ¢(2) = Ej g cosé (1 - pg) exp(-x3z/H) (2.1)

where x;, is the spectral absorption coefficient of the liquid, p is the direction
cosine to the z-axis, and pg is the reflectivity of the liquid surface for an angle
0 between the incident radiation and the droplet normal. x; acts to
exponentially damp the radiative flux over the distance it has traveled inside
the droplet, z/p. p is found from Snell’s Law (neglecting the slight

dependence of n on wavelength):

n sin' = sin6; M =cos8'; n=133

| = cos [sin-1(0.75 sin6)] (2.2)

E)_ g is found using I ¢, the spectral intensity at polar angle 6 due to the

radiative source, and the differential solid angle dw:

Eyg=Isdo where dwo=dA, / R2 (2.3)



dAp, only covers a fraction of the hemisphere at 6, that fraction of the

hemisphere occupied by the source of the radiation. The author designates
this fraction the fractional coverage with symbol fg, the f chosen because of the
relation to the view factor nomenclature. fg will be found for the specific

laboratory geometry using analytic geometry.
Then do = 2 « fg sin® d6, and using the identity E = n 1 [16], we have
Fy_¢(2) = 2 Ej ¢ fg cos0 sind (1 - pg) exp(-x)z/p) dé (2.4)

Integrating over all possible wavelengths and polar angles gives

F(z)=2] o“ EysJ 0"/2 fg cosO sind (1 - pg) exp(-xyz/u) d6 dir (2.5)

The volumetric heat generation due to absorption by radiation H appears

because of conservation of the energy missing from F as z increases [17]:

H(z) = -dF/0z , (2.6)
oo 2
=2/ "Exsa J,*" (1) fg cos sin (1 - pg) expl-kyz/ 1) d6 dA

These important expressions for F and H are developed by Viskanta and '1'_60r
[17] for the more general case including scattering and bottom reflection.

Their particular application was local absorption of solar radiation in a pond.
Their expressions do reduce to (2.5) and (2.6) under the assumptions made in

this development.

In order to numerically evaluate the double integrals in the expressions for F



and H, the folléwing functions of 8 and A must be determined:
(1)  Ej g, the incident polar and spectral distribution
(2) fo, the fractic;nal coverage of the hemisphere as a function of 6
(3)  pg, the droplet surface reflectivity, a function of 6
(4)  x;, the droplet spectral absorption coefficient, a function of A

The next four sections are devoted to this task.

2.2 Assumption of Blackbody Source
The three radiative heater coils of the experiment may be considered to be
blackbodies. Then, the spectral distribution of the incident radiation is given

by the familiar Planck distribution [16}:

Ejg=Exp=Cy / (A5 [exp (C2 / ATR) - 11) @7
where Cy =2 nh cp? = 3.742E8 W-pm4/m?
Cy = (h ¢ / k) = 1.439E4 pm-K

Of course, the radiative heater coils are not perfect blackbodies. However,
this approximation is the only reasonable means of quantitatively
characterizing the spectral dependence of the incident radiation.
Furthermore, the integration step will likely smooth out any differences

between reality and the blackbody assumption. The heater coil temperature

Tg is read as an experimental digital display.

2.3 Analytic Calculation of Fractional Coverage fg
With a few reasonable assumptions analytic geometry can yield the functional
form of fg. These assumptions are listed in the following:

(1)  The axes of symmetry of the two upper cone-shaped heater coils pass



v)

3)

4

through the center of the liquid-solid interface.

The elevations and radial positions of the two cone-shaped coils are
equal. ‘

The ring-shaped coil is horizontal and its axis of symmetry passes
through the center of the liquid-solid interface.

The small eccentricity of a given point on the droplet is neglected.

Figure 3 is the vertical section of the geometry perpendicular to the faces of

the cone-shaped coils with the needed measured dimensions. The

measurements also implicitly assume that the two cone-shaped coils are

radially opposite each other. The dimensions of Figure 4, a fabrication

drawing of the cone-shaped coil assembly, are also required.

Planar trigonometry gives the fg function corresponding to the ring-shaped

geometry in a straightforward manner as illustrated in Figure 3. Note that fo

is constrained to be zero in a range of 0 because the lip of the ring-shaped coil

blocks a section of each cone-shaped coil. The analysis of the two cone-

shaped coils is more involved:

1)
(2)

3)

4)
)

Find the center point of the front face of one of the cone-shaped coils.
Use the radius of this disk-shaped face to find the equation of the
sphere containing the circular edge of the disk.

The intersection of this sphere and the sphere centered at the origin
with radius equal to the distance from the origin to the point of highest
elevation of the cone is the equation of the disk face of the cone-shaped
coil.

Write this equation of the circular disk face in spherical coordinates.
Then calculate the azimuthal position of the disk ¢4 as a function of

polar angle 6. Because there are four total semicircular disk sections,
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fo=4¢q / 2n (2.8)

(6) Subtract out the effect of the holes in the cone-shaped coils (truncated
sections) by repeating the analysis using the center of the back face of

the cone and the sphere centered at the origin and passing through the

edge of the back disk face.

The required nomenclature is presented in Figure 5 and the mathematical

manipulations are given below.

ZA

1

FIGURE 5
Conical Heater Panel Coordinate System and Nomenclature

(1) Choose c=0
Then C =(pc, 6c, 0)
Xc = Pe SinB¢ cosdc = Pc sinbc
Ye = Pc sinBc sindc = 0

Zc = pc cosb¢

11



(20 And (x - X0)2 + (y - Y2 + (2 - 20?2 = 142

Thus the equation for the sphere centered at C is

x2 - e+ Y2 + 22 - 222¢ = Td2 - X2 - 2 2.9
(3)  The equation for the sphere centered at the origin is
x2 +y2 + 22 =p2 (2.10)
Then 2xXc + 22Z¢ = p2-Td2 + X2 + 22 = 2p2
Or x=-(2c/ Xo)Z+p2 / Xe (2.11)

(4) In spherical coordinates

p sind cosdd = - (Zc / Xc) p €08 + pe? / Xc

(5 Then ¢d = cos1 [pc / (p sinB sind) - cotd. cotb] (2.12)
And fgfront = (2/7) cos-1[p¢ / (p sinB¢ sind) - cotb cotd] (2.13)
where p = (p2 + 142)1/2
6) Finally  fg= fefront- fgback (2.14)
where fgback = (2 / ) cos-1 [pcback /(pback sinB. sinB) - cotb, cotb]

Of course fgfront and fgback must be set to zero for certain ranges of 6.

Using trigonometric identities one can show that the fg function does in fact
become zero for the uppermost and lowermost elevations of the cone-shaped

coil disk face. The arccosine argument becomes equal to one:

First 6o =6c1 Y, pc / p = cosy
Then p¢ / (p sinB¢ sinB) - cotd. cotd
= [cosy / sinB¢ - cotB. (cosOc cosyF sinb siny)] / sin(6c £ 7v)
= [cosy (1 - cos20c) £ cosO sinb siny] / [sinB sin(6¢ + v)]
= (cosy sin20. * cosh. sindsiny) / (cosy sin26. * cosB, sinBcsiny)

=1
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Figure 6 shows the functional forms for the cones and holes. Note that the
functional form is biased toward smaller polar angles; less surface area need
be covered at higher elevations. Figure 7 shows the complete fg function after
the subtraction of the holes and addition of the ring-shaped coil. The function
was saved numerically in a data file for 0.1 degree increments for use in the
numerical double integrations of F(z) and H(z). Note that fg is fairly sensitive

to the geometrical measurements p. and 6.

2.4 Reflectivity of Liquid Surface pg

Because water can be considered a dielectric, its reflectivity is strongly a
function of the incident angle (already assumed to equal the polar angle ).
By assuming that the incident radiation is randomly polarized the reflectivity
pg is found as the arithmetic average of the perpendicular and parallel
interface reflectivities given by the Fresnel relations of electromagnetic theory

[18]):

pe=RL+Ryp /2 (2.15)

Because water is weakly absorbing (k << n), the effect of the absorption
optical constant k, and its dependence on wavelength, can be neglected. Then

the Fresnel relations reduce to

R, = [(cosB - u) / (cos® + u))2 (2.16)
Ry = [(n2cosO - u) / (n2 cosd + w)}2 (2.17)
where u = (n2 - sin20)1/2

and again n = 1.33 is a sufficdiently accurate value representative of all

13
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wavelengths. The plot of pg in Figure 8 shows that radiation incident at
shallow angles will not enter the droplet-solid system but rather will be

reflected back to the surroundings.

2.5 Absorption Coefficient x;,

The absorption coefficient x; is just the exponential damping coefficient of
the radiative energy flux with distance through the absorbing medium. For
water x; is a very strong function of wavelength with water generally
appearing opaque to large-wavelength, low-energy radiation and transparent
to small-wavelength, high energy radiation. Because the blackbody
distribution is also a strong function of wavelength, it is prudent to use a
relatively precise form of the x; function from the literature. Reference [19]
gives the optical constant k for many wavelength intervals, and that data is
used for the model presented here. The electromagnetic theory provides the

conversion to x; [18]:

K), = 4nk/A (2.18)

Care was taken to accurately characterize the function for large wavelengths
(> 10 pm), because a significant percentage of the energy is found in this range
for the radiative heater temperatures available in the laboratory setup.

Figure 9 is a log-log plot of x; versus wavelength. Planck blackbody

distributions are superimposed on the plot and approximate the spectral

dependence of the incident energy for several values of Tr.

2.6 Numerical Integration Scheme

The numerical double integrations for F(z) and H(z) were carried out using a
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simple rectangular integration scheme, but the fineness of the integration grid
guarantees sufficiently precise results. The step size in 6 was 0.1 degree while
the step size in A varied to correspond with the optical constant data. The
analytic expressions for E; p, i, and pg placed no additional constraints on
step size. Integration over wavelength was carried out to 200 pm, where the
incident radiation can certainly be neglected (Ej p << 0.1 W/ m2). The lower
limit on wavelength was chosen to be 0.2 pm where again the incident
radiation can be neglected, but here only for radiative source temperatures
up to about 3000 K (the small bandwidth from 0.0 to 0.2 um justifies
neglecting this energy for higher temperatures). Appendix A presents a
listing of the QuickBASIC computer code used in the actual computations of
F(z) and H(2). '

2.7 Results

Figures 10 through 12 graphically display the calculation results for the F(2)
function, the radiative flux at a depth z below the liquid-vapor interface. The
normalized quantities are with respect to the value at the liquid-vapor
interface using the corresponding radiative heater temperature. Figures 13
through 16 display the results for the H(z) function, the volumetric heat
generation term, using the same normalization scheme. Figure 16 is included
only to show that H(z) truly becomes negligible for low values of TR. The

laboratory range of radiative source temperatures Tg is from 475 to 650 C (750

to 925 K) while 5800 K is the characteristic solar temperature.

Several interesting and important conclusions can be drawn from the graphs:

(1)  For laboratory Tg, the radiative flux drops off to approximately 7% of

its surface value at a depth of 0.1 mm.
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(2)  The volumetric generation term drops off to approximately 6% at a
depth of 0.02 mm.
(3)  For laboratory Tg, the volumetric generation term drops off to

approximately 0.4% at a depth of only 0.1 mm.
(4)  For higher Ty, the volumetric generation term becomes roughly linear

(and to a lesser approximation constant) for z greater than about

0.2 mm.

These observations suggest that the radiative energy reaching the droplet may
be input to the droplet-solid system at three locations: the liquid-vapor
interface, the droplet interior, and the solid-liquid interface. In addition, for
laboratory conditions, the term input to the droplet interior may be
neglected. The details of the simplified model are given in the following

subsection.

2.8 Simplified Model

Because the method of adding the volumetric heat generation term must be
compatible with the liquid heat equation models used in the overall
computer model, it is unrealistic to use the entire functional form of H(z, Tg).
The typical droplet has an initial apex of from one to four millimeters, so any
reasonable finite difference grid could not represent the H(z) curve. The
equation for the analytic quasi-steady state liquid solution, given in Chapter
3, requires two integrations of the H(z) function. These analytic integrations
are not practical because of the difficult curve fit required (the next
subsection only gives a piecewise curve fit). The solution is to take advantage
of the very thin layer in which much of the absorption takes place and assume

a surface boundary condition and perhaps a residual H term.
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The radiative flux that penetrates into the droplet has a vertical value just
inside the droplet given by (2.5) with z = 0. This flux is calculated with help
of the quantity F¢ as defined by the author:

o0 2
Fa=0") =2] "By Jo"’ £ cos sin@ (1 - pg) dO dA
oo 2
= [Jo Ejp dA] [Iou/ 2 fg cosB sin® (1 - pg) d6]

=Ey, Fe
= F; 6 Tg? (2.19)

where numerical integration gives
Fe = 0.2261 (2.20)

and the Stefan-Boltzmann law has been used.

Because H(z) drops off so quickly just inside the droplet, the flux given by
(2.19) can be divided into three portions: that absorbed at the liquid-vapor
interface, that absorbed throughout the droplet depth, and that absorbed at
the solid-liquid interface. Assuming as before no reflection at the droplet
bottom, the portion absorbed at the solid-liquid interface is a fraction of the

quantity given in (2.19) to be found by setting z to 8 in (2.5):

F(z=3) = F 0 Tr* (FRACTION at z = 9) (2.21)

This term is subtracted from the liquid-solution conductive flux for use by
the solid BEM and will become significant when the droplet becomes
extremely thin near the end of the evaporative process. The next subsection
gives a curve fit for (FRACTION at z = 8) so that the code can use (2.21)

without storing a large numerical array of the radiative flux as a function of z
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and TRr.

Figure 15 suggests that a uniform value for the residual volumetric heat
generation He is a reasonable approximation. Then, the liquid-vapor
boundary condition flux is calculated using an energy balance (per unit

horizontal area):

F(z=0) = F 0 T4 - F(z=8) - Hc &
=F, 6 Tg? [1- (FRACTION at z = 3]-Hcd (2.22)

For energy input to the droplet interior, the He term is also used in a

nonhomogeneous term in the tridiagonal finite difference solution and in the

analytic quasi-steady state solution. Note that Hc is applied in the entire

droplet thickness including the thin primary absorption zone at the liquid-

vapor interface. A simple curve fit for an H(TR) function could be carried
out. Because H. is extremely small for radiative source temperatures under
laboratory conditions, the EVAP code itself assumes that H is zero.

However, the development of Chapter 3 only assumes that H is uniform, so
the EVAP code may easily be extended to cover higher values of Tr. Rather
than assuming a constant form for the residual heat generation, a linear profile
could be used. However, this would significantly complicate the quasi-

steady state analytic solution, and this option is not explored.

2.9 Curve Fit for Radiative Flux F(z, Tg) for Laboratory Tg

The curve fit developed here is used in the overall model FORTRAN code in
order to quantify the radiation directly absorbed by the solid in the wetted

region. Figure 17 suggests a hyperbolic or exponential form for a curve fit.
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The author chooses to try a hyperbolic-type fit by plotting the reciprocal of
normalized F(z) shifted down one unit (Figure 18). The six curves,
representing the laboratory Tg temperatures, are indeed somewhat linear.
Piecewise linear fits are made over the 1/F(z) - 1 curves over five ranges for z
less than 1 mm using least-squares statistical spreadsheet functions. The range
for z up to 1 mm is also used for z greater than 1 mm because the curves
becomé rather linear at z = 1 mm and because normalized F(z) becomes rather
small for z greater than 1 mm. Each linear fit for a range and TR value results
in a slope m and y-intercept b. Another spreadsheet program allowed easy

least-squares second and third order polynomial fits of the m and b

quantities. The resulting form of the curve fit of F(z, Tg) is

F(z, T) = Fe 6 Tr¢ / (m(Tg)z + b(TR) + 1) (2.23)
(FRACTION atz = 8) =1 / (m(TR)8 + b(Tg) + 1) (2.24)
where m(Tg) and b(TR) are listed in the final FORTRAN code of
Appendix B in the FUNCTION FRAD(D, T).

The curve fit for H(z, Tg) is easily found by partial differentiation:
H(z, Tg) = 0F/9z = F 6 Tg? m(Tg) / (m(Tg)z + b(Tg) + 1)2 (2.25)

Figure 19 shows that the original F(z) function and its curve fit evaluated for

Tg of 500°C closely match with the maximum error being 3% of the liquid-

vapor interfacial value. Figure 20 shows that using the curve fit in (2.25) to

calculate H(z) degrades the agreement somewhat.
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2.10 Summary of Assumptions and Errors

The assumptions of this chapter, both in the governing equation (2.6) and in

the simplified model, have made the problem of direct radiation absorption

by the droplet tenable. The assumptions and corresponding justifications

used to arrive at the radiation model used in the computer calculations of

Chapter 4 are summarized in the following:

(1)

2

3)

4)

(5)

(6)

v

blackbody behavior of the radiation emitting heat panels—panels
have black coatings

geometrical symmetry including azimuthal symmetry of the droplet
and symmetry of the radiative panels with respect to the droplet—
droplet symmetry before impact and experimental design

reflection at the liquid-vapor interface obeys the Fresnel relations for
randomly polarized incident radiation—water can be considered a
dielectric

the liquid-vapor interface is horizontal and flat—droplet rather thin
scattering of radiation within the droplet is negligible—droplet is
relatively thin, and the water is degassed

no reflection at the solid-liquid interface—emissivity of solid
approximately 0.84

radiation entering the droplet is completely absorbed at the surface—

justified by evaluation of the very small residual volumetric heat

generation for laboratory values of Tg.

Of the seven the most questionable assumption is (4) because the outward

normal near the edge of the drop may in fact be closer to horizontal than

vertical. Equation (2.6) then overestimates the fraction of energy reflected

away from the droplet. The conclusion that under laboratory conditions
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absorption is restricted to an extremely thin zone at the surface would not be
affected, but two options for improvement in the overall code (Chapter 3) do

become apparent:

(@ Assume some value for F; between that calculated with assumption (4)
(i.e., Fp = 0.226) and that resulting with pg =0 (i.e., Fe = 0.255).

(b) Make F a function of the local geometry through r and the derivative
(slope) of the droplet profile.

The relatively small 13% difference between the two Fg values suggests that

using assumption (4) is not critical to the simplified radiation model so long

as He may be neglected although this hypothesis has been put forward to

explain the results of Chapter 4.

On the other hand, for real-fire non-laboratory conditions the removal of
assumption (4) may affect the value of Hc and make it a function of r to be
evaluated ac the droplet profile is updated. These evaluations could be
expected to require significant and intensive computational effort. Not only
would the local reflectivity affect H, but so would the variable distances to

the free surface (lengths for exponential decay).
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3. SECTION II - COMPUTER CODE DEVELOPMENT

This chapter reviews in detail the development of the overall model

FORTRAN code (PROGRAM EVAP) listed in Appendix B. Although the

code was completely re-written, previous workers in this NIST-Center-for-

Fire-Research-sponsored line of research have written codes with many

similar elements [8, 10-12], and EVAP builds on their work. Re-writing

allowed for maximum understanding of the effect of each level of model

refinement while comparison with previous models and results provided a

firm base of reference. The following program features are new:

(D

(2)

3)
4)

&)

(6)

)

(8)

radiation model of Chapter 2 incorporating the experimental geometry
of Dawson [13]

framework for radiation model allowing for constant residual
volumetric heat generation term—needed for high Tg

exclusively one-dimensional liquid model

initial liquid temperature distribution given by the error function
solution to the semi-infinite solid problem

avoidance of computationally intensive, extremely small initial time
steps by assignment of initial quasi-steady state status to outer droplet
nodes based on Fourier number criterion

smooth transition from transient tridiagonal finite-difference solution
to quasi-steady state analytic solution

use of Clausius-Clapeyron equation in analytic linearization of
evaporative liquid-vapor boundary condition

option of two droplet geometry models with the second model

(subroutine written by S. Tinker) allowing detailed consideration of the
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transient droplet contact angle 6 and the receding angle 6,

(9)  detailed reporting of meaningful transient quantities such as area-
averaged upper and lower droplet surface temperatures

(10) criterion for termination of boundary element method (BEM)

integration in recollection time

Furthermore, the main code, subroutines, and functions are well annotated
with all variables explicitly defined, and those quantities for which
modification requires additional changes in the code are clearly identified.
Effort has been made to make the 1500 lines of code readable and
computationally efficient. Early versions of the program were written in
QuickBASIC and run on PCs with 486 microprocessors. This allowed for
sophisticated debugging capabilities and computational speed. Later
versions were edited using the 486s and transferred to the NIST Tiber system
for execution in FORTRAN so that the required bessel and error functions
could be called and the code run with acceptable speed. The final version of

the code requires approximately 30 minutes to run on Tiber.

Because of high solid temperature gradients, a Green's function solution
equation or BEM method is used to calculate the solid surface temperatures.
The next subsection on the BEM precedes the subsection on program
structure because of the strong influence BEM exerts on the structure.
Subsection 3.3 describes the solid-vapor boundary conditions while
subsections 3.4 through 3.9 are needed for the much more complicated solid-
liquid boundary condition, i.e. the liquid solution. Subsection 3.10 shows
how the BEM and liquid solutions are legitimately coupled. Finally, the last

subsection details how the many property values were specified.
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3.1 The Boundary Element Method (BEM)

Because EVAP is required to model solids with low thermal conductivity, the
spatial and temporal temperature distributions in the solid are crucial to the
evaporative process. DiMarzo [10] noted results that finite-difference
methods within the solid with reasonable time steps fail because of sharp
localized gradients at the droplet edge. However, a boundary element
method is well suited to the problem. By linearizing the solid-vapor
boundary condition, the solid problem (governing heat equation and
boundary conditions) becomes linear and a Green's function approach is

valid.

A heat conduction Green's function is a solution to the heat conduction
problem having the same geometry but having homogeneous boundary
conditions as the original heat conduction problem. It represents the
temperature response at a point in time due to a heat pulse at another point at
some previous time. By integrating all the heat pulses over space and
recollection time, the current temperature distribution is found. Beck, et al.,
[20] present a very good full-text treatment of heat conduction using Green's
functions in which they derive the general Green's function solution equation
(GFSE) for heat conduction using mathematical manipulations such as

Green's theorem. The general GFSE is
T(rl t) = Tinit(r: t) + Tgen(l', t) + TbC(rr t) (3.1)
where Tjpijt is the temperature contribution due to the initial conditions, Tgen

is the contribution due to volumetric heat generation within the solid, and

The is the contribution due to the boundary conditions. Tgen is zero because
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their is no internal heat generation, and Tinit can be conveniently be made zero

by subtracting away the initial temperature distribution.

The mathematical statement of the problem in the semi-infinite solid domain

(see Figure 2) is
9T/3t = as V2T (3.2)
t=0: T=Tgy-qoz/ ks (3.3
0<r<sR;z=0: -ks 0T/0z given (3.4)
r>R;z=0: -ks 9T/9z = h, (Tg - Ta) - Fe o Tg? (3.5)
z— —oc;allm -ks dT/0z = qg (3.6)
r—o0z<0: oT/ar = 0 or equivalently -ks dT/9z = qg (3.7)

Note that qq is negative for the case of radiative heat input. Tinjt is made zero

by mapping the problem to the u domain:

u(r,z,t) =T, z,t)-Tsg+qoz / kg (3.8)
du/dt = as V2u (3.9
t=0; u=0 (3.10)
0<rsR;z=0: -ks du/dz given (second kind) (3.11)

r>Rz=0. -ksou/oz =h, (Tg- Ta) - Fe 0 T4 - qq (third kind) (3.12)
z— —ooallr: du/oz=0 (3.13)
r—o52<0: du/oz=0 (3.14)

Only the boundary condition on the solid surface remains nonhomogeneous.

Now using the GFSE with the expression for Tpc (second and third kind)

yields an expression for the solid temperature distribution:
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T(r,z,t) =u(r,z,t) + Tsg-qoz / ks (3.15)
where u(r, z, t) = o It,t 0 J:_ o 0u/02Glr, 2,7, 0, t) 2nr' dr' d’

and the proper form of the Green's function (typically found using Laplace

transforms, separation of variables, etc.) is [20]

G,z t1,0,t)
= 2 (4noet’)3/2 exp(-z2/4ost’) expl-(r-r')2/4ast’] Lo(rr'/20t)  (3.16)

where Lg(a) = e-alg(a) is the exponentially damped modified Bessel function of
the first kind of order zero and is calculated by calling a system FORTRAN

subroutine.

Note that t', the recollection time, is zero at the current time step and increases
in the negative time direction, i.e. t' = t - tg where ty is a dummy integration
variable in the forward time direétion. The liquid solution and infrared
thermography experimental validation only require the solid surface
temperatures, so the simplification z = 0 is made in the resulting expression

for u:

u(r, z=0, t) (3.17)
= (4nag)1/ 2](_: OIr': O(E)u /92) 1" t-3/2 Lo(rr'/ 2at) expl-(r-r')2/40st'] dr' dt’

where du/9z=0dT/dz+ qg/ ks=(qp-qs) / ks (3.18)

The numerical evaluation of (3.17) at each time step is referred to as the BEM.

Two difficulties become apparent: a) at what r do the integration terms
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become negligible? and b) how to handle the degenerate cases whenror r'
may be zero or equal or when t' is zero. Liao [12] showed that r = 10Rj is
sufficiently large for an upper bound. Zero points are avoided by a
nodalization scheme in which functions are evaluated in the center of radial
and time steps. The case for integration terms where r = r' is handled by an
approximate analytic integration just over the element of concern in which an
exp(u2)-type term becomes an erf-type term. The resulting numerical

integration expression as derived by Liao [12] and verified by the author is

u(r, z=0, t) ‘ (3.19)
= (4nag)l/ 22‘,{ Zr p (Qu/92) r' t-3/2 Lo(rr' /20st) expl-(r-1')2/4ast’] Ar' At

+ Zt' (u/92) r t-1 Lo(r2/20t) erf [0.5Ar/ (4ast)1/2] At

where T(r, z=0, t) = Tg(r, t) = Tgg + u(r, z=0, t) (3.20)

The temporal integration step size must be chosen sufficiently small to
capture the temporal behaviors of the Green's function and u gradient while
the overall, forward-marching time step should only capture the temporal
behaviors of the surface fluxes and temperatures. The author chooses overall
time steps of 0.1 s and 1.0 s with the smaller time step to be used for several
seconds after droplet impact when the heat flux rapidly decreases according
to the semi-infinite solution. These values are consistent with the time step
chosen by Liao [12]. The products of the terms in (3.20) excluding the du/oz
forcing function are considered the weight functions. Figure 21 shows the t'
behavior of several typical limiting case weight functions (limiting values of r
and r') where the weights which increase as t' approaches 0 apply for the case
r =r'. The 0.1 and 1.0 s time steps will not adequately capture the Green's

function. EVAP handles this by integrating the Green's function itself over
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the first second or two using a step size of 0.004 s and saving the values ina
weight matrix. For larger recollection times u is calculated at the center of the

overall (0.1 and 1.0 s) time steps.

The change from the 0.1 to 1.0 s time step requires careful handling of the
matrix of past forcing functions, the past solid surface heat fluxes mapped
into the u domain by subtracting away the initial uniform flux. When t equals
4 s, the time step At is changed to 1.0 s, and SUBROUTINE RECONF is called.
The algorithm in RECONF redefines the forcing function matrix FRCFNC so
that the forcing function values at the centers of the 1.0 s time steps are used.

The key line of code is
FRCENC(K, J) = (FRCENC(10#K - 5), J) + FRCFNC(10¢K - 4),])) / 2

Because the Green's function decays with recollection time, integration all the
way back to droplet deposition may not be necessary. However, when the
droplet becomes completely evaporated the required maximum recollection
time or "memory"” changes drastically. EVAP uses a dynamic measure of the
required "memory"” by aborting the time step integration loop if all the ratios
of the current u addition to the maximum u addition (all nodes) are less than
a user-defined ratio called NEGRAT. Results for the output MEMORY are

given in Chapter 4.

The radial step size becomes larger for large r where temperatures and heat
fluxes are known to be much more uniform. The number of elements is rather

conservative at 78 with 12 making up the initial wetted area, and the

outermost element extends to a distance of 13Rgy. The breakdown of element
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size is given in FUNCTION WGHT.

The steps that EVAP uses to calculate the current solid surface temperature

given the vector of current solid surface fluxes (u gradients) are

(1) Calculate and save integrated Green's function values for small
recollection times in matrix called W.

(2)  Update the matrix of past forcing functions FRCFNC using current
solid surface fluxes.

(3)  Call SUBROUTINE BEM1 (or BEM2) to calculate u vector as a matrix
multiplication.

(4)  Call FUNCTION WGHT to calculate the needed weight (effect of one
element on another or itself for a certain recollection interval).

(5)  For short recollection times (<1.0 s for At = 0.1 s and 2.0 s for At = 1.0 s)
get the weight from W, and for longer recollection times explicitly
calculate the weight using one formula for r # r' and another forr =r'.

(6)  Following completion of the multiplication of the weight and forcing
function matrices, add u to Tg to get Ts.

These functions of EVAP were validated by assuming a constant and uniform

flux over a circular disk on the semi-infinite solid, a problem for which an

exact solution is known. The results of this validation are presented in

subsection 4.8.

3.2 Program Structure

With the requirements of the solid solution (BEM) part of the code clear, the
required structure of the remainder of the code is evident. The remainder of
the code must take the solid surface temperatures from the BEM and return

the solid surface heat fluxes. For the non-wetted region this is a simple task,
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but for the wetted area a liquid solution is needed.

The liquid solution assumes that all heat flux is one-dimensional with no
radial component (previously shown to be small [15]), and proceeds through
three modes: a) error function solution based on the instantaneous contact of
two semi-infinite bodies; b) tridiagonal transient solution; c) quasi-steady
state analytic solution. Boundary conditions consider the effects of radiative
input, convection, evaporation, and re-radiation at the liquid-vapor, solid-
vapor, and solid-liquid interfaces. The evaporative boundary condition
requires careful calculation using the Chilton-Colburn analogy and Clausius-
Clapeyron equation while the radiative boundary condition relies on the
simplified model from Chapter 2. Finally, because of the critical and
unpredictable effect of droplet impact, surface tension, and flow, two
empirical models are used to specify the transient droplet profile. Finally,
the overall model must couple the liquid and solid domains using a simple
predict-correct method in which there is feedback between solid surface
temperature and heat flux. Figure 22 is a simplified flow chart of the program

structure.

3.3 Solid-Vapor Boundary Condition

The non-wetted solid surface boundary condition must account for radiation
absorbed from the heat panels, re-radiation from the solid surface to the
surroundings, and convective cooling to the ambient. The boundary

condition on T(r, z, t) can then be written:

r> R; Z= 0: 'ks aT/aZ = qconv + qre.rad - qrad (3.21)
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The convective term can be written using the experimentally measured
convective heat transfer coefficient [21] as a function of initial solid surface

temperature Tgy, curve fit by the author (see Figure 23):

qconv = h (Tg - Ta) where
h = -42.348 + 1.3663Tgg - 0.011498Tg? + 3.1954E-05Tgy3 W/m2-K  (3.22)

with 70°C < Tgp < 160°C

The linearized form of the re-radiation term is given because the BEM
requires linear boundary conditions and because the solid surface

temperature is expected not to vary more than about 50°C:

gre-rad = hy (Tg - Ta) where
hy =€ 6 ((Tgp - 15°C) + Ta) ((Tgp - 15°C)2 + Ta2) (3.23)

and (Tgg - 15°C) is a reasonable value of the expected solid surface

temperature in order to make h, constant. The emissivity of the Macor tile is

given as € = 0.84. The radiation absorption term is theoretically calculated

using the fg term from Chapter 2:

oo /2
Grad =2¢] Epp) 0" fg c0s sin d6 di
oo 2
=€ UO Ejpdi] Uon/ 2 fg cosO sind d6]

=€ Eb F
=Fe o Tr4 (3.24)
where numerical integration gives  F = 0.2552 (3.25)

By defining the overall heat transfer coefficient as hy = h + hy, one arrives at
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equation (3.5), the solid-vapor heat flux needed by those boundary elements

not covered by liquid:

r>R;z=0: kg dT/0z = h,, (Tg - Ta) - Fe o TRt (3.5)

3.4 Semi-Infinite Liquid Solution

The purpose of the semi-infinite liquid solution is to handle the singularity of
the infinite initial heat flux caused by the temperature discontinuity between
the solid and just-deposited droplet. The time step required by the
tridiagonal solution of the next subsection to accurately handle the high heat
fluxes would be too small to be practical. However, before the diffusive heat
wave reaches the liquid-vapor interface, the liquid temperature distribution
will (to an acceptable approximation) be that of a semi-infinite body brought
into instantaneous contact with another semi-infinite body, the solid. Another
needed but reasonable assumption is that the interfacial solid-liquid solution
is constant for the short time that the heat wave has not yet reached the liquid-
vapor interface. Then the classic solution by Carslaw and Jaeger for a semi-
infinite body initially at a uniform temperature with constant surface

temperature can be used:

T(r, z,t) = Tc - (T - Ty) erf (0.5z(aq t)71/2) (3.26)
qs = k) (Tc - Tp) (r ay t)-1/2 where (3.27)
Te = [(kip1c) /2T + (kspscs)1/2Tspl / [(kpia)1/2 + (kspsce)1/2]  (3.28)

is derived by equating the two semi-infinite body surface fluxes. Note that
(3.28) is strictly valid only for a constant not linear initial solid temperature.

However, the heat flux from the initial linear temperature distribution is only



a small fraction of the heat flux given by (3.27), and neglecting this effect is

certainly within the level of approximations already made.

This solution is enforced until the heat wave reaches the liquid-vapor
interface, arbitrarily assigned to be when the error function becomes about
99.6% of its maximum value of 1.0. This percentage was chosen because it
means that a 1.0 mm thick region of the droplet will require 0.4 s before the
heat wave hits the upper surface. Then the time for switching to the

tridiagonal solution tsis is calculated as

erf (0.58(cy ts15)°1/2) = 0.9962
0.58(cy tsis)1/2 = 2.0611
tgis = 82/ 170y (3.29)

In addition, the radiative, convective, and evaporative boundary conditions
need not and cannot be applied at the liquid-vapor interface during the semi-
infinite solution because conditions there have not changed since before
deposition (t = 0) and are considered to be off at infinity. The time tgis varies
for each wetted solid surface element because the thickness of water above
each element is different. The initial liquid temperature profile for the
tridiagonal solution is found using (3.26) except that Tc is replaced by the -
current temperature calculated by the BEM in order to keep the profile

smooth as required by the tridiagonal solution for physically meaningful

results. The BEM cannot function with the restriction that Tg be constant.

3.5 Tridiagonal Transient Liquid Solution

The droplet liquid can be assumed to be stagnant, and the small Eulerian

45



temperature time derivative associated with droplet edge recession
(geometry Model B) can be neglected. Then conduction and radiation
absorption are the only modes thermal energy transfer. Furthermore, the
radial conduction term is small and can be neglected [15]. The resulting one-
dimensional transient heat equation with volumetric héat generation and

applicable boundary conditions are

oT/ot=a02T/0z2+a H. / k (3.30)
T(z=0) = Ts(t) (331)
oT(z=8)/9z = A T(z=5) + B (3.32)

where the solid-liquid surface temperature is given by the BEM, and the
liquid-vapor boundary condition has been linearized as is required to make
the liquid solution linear and amenable to the tridiagonal method.

Expressions for A and B will be derived in subsection 3.7.

This transient heat problem is numerically solved by dividing the droplet
into annular columns with each column atop a BEM element. Each column is
divided into n-2 finite difference elements with a phantom node just across
each boundary. This arrangement with no nodes on the boundaries better
represents the nonhomogeneous volumetric heat generation terms. Then the

discrete form of (3.30-3.32) is

(Ti*-T) / At=a [(Tig* - 2Ti* + Tis1D) + (Tia1 - 2Ti + Tiv1)] / 2 (Az)2

+aHc/k fori=2,3,...,,n-2,n-1 (3.33)
(M*+T2Y) /2=Ts (3.34)
(Tn+ - Tn-]+) / Az =A (Tn-]* + Tn+) / 2+B ‘ (3.35)
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where the second order central derivatives are averaged to take advantage of
the guaranteed stability of the Crank-Nicholson method. The small

temperature changes caused by the very small velocities of the nodes as they
compress together as the droplet gets smaller can also be neglected. Moving

the unknown new temperatures to the left in this implicit system yields

A Tir*+ (1 +29) Tit -y Tiar* = Ti + ¥ (Tie1 - 2Ti + Tiwd) + M

fori=2,3,...,n-2,n-1 (3.36)
0.5T1* + 0.5T7* =Ts (3.37)
(-1 - 0.5AAZ) Tp-1* + (1 - 0.5AAz) Th* =B Az (3.38)
where Yy=aAt/2(Az)2 and n=aHcAt/k (3.39)

An efficient standard routine, part of SUBROUTINE GAUSEL, is used by
EVAP to solve this system by arranging the coefficients in an nx4 tridiagonal
matrix. The residual heat generation Hc need not be taken to be unifrom in
(3.39). Because Hc was found to be negligible in Chapter 2 for laboratory

conditions, it is set to zero in the code.

3.6 Steady-State Liquid Solution

Although the Crank-Nicholson method is unconditionally stable, its
numerical accuracy is dependent upon the value of the nondimensional
multiplier Y= a At / 2 (Az)2. Al-Khafaaji and Tooley [22] recommend that y
be limited to 0.5. Unfortunately, as the droplet shrinks the axial step size Az
causes ¥ to quickly increase. However, during this time, the temperature
distribution in each annular column becomes smoothed out, and the time
derivative 9T /9t becomes negligible (as will be documented in Chapter 4).

Then the liquid problem can be solved analytically yielding expressions for
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the solid-liquid heat flux and updated liquid-vapor interfacial temperature.
The current liquid-vapor interfacial temperature is needed to evaluate the A
and B quantities in the linearized boundary condition and the evaporative
mass flux. This solution is referred to as quasi-steady state because the
boundary conditions and droplet thickness can still vary with time but not
fast enough to warrant the need for evaluating dT/dt. The quasi-steady state

problem statement and solution follows:

d2T/dz2 = -H./k (3.40)
T(z=0) = Tg (3.41)
dT;/dz = AT; + B where here T; = T(z=0) (3.42)
T(z) = -Hez2/2k + c12 + @ and dT(z)/dz =-Hcz/k + 1

2 =T(O) = Tg

T; = -Hcd2/2k + 18 + 2 and dT;/dz=-Hd/k + 1

then, -He8/k + ¢1 = ACHD2/2k + c18 + ) + B

solving for ¢ gives
c1 = (AH2/2k - Hed/k - ATg-B) / (Ad-1)

qs = k (AH(82/2k - He8/k - ATg - B) / (1 - AJ) (3.43)
T; = -Hcb2/2k - (AH82/2k - Hd/k - ATg-B)3/(1- A8) +Ts  (3.44)

Note that He must be constant in the above derivation. The effect of Hc is to

bow out the radiation-free linear temperature solution thus pushing thermal
energy toward both interfaces. More complex forms of H¢ may be used, but

the resulting derivation would be somewhat complicated. Again Hc is small

enough to be neglected for the laboratory conditions modelled by EVAP, so
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the following expressions are substituted for (3.43) and (3.44):

qs=-k(ATg+B)/(1-AD) (3.45)
T;= 5(ATs+B) /(1-A8 +Tg=(Ts+B& /(1-AJ) (3.46)

3.7 Liquid-Vapor Boundary Condition and Volume Flux
Thermal energy is transferred at the liquid-vapor interface by radiation
absorption (20 pm deep layer), convective cooling, and evaporation.

Therefore the liquid-vapor boundary condition is
-k dT;/9Z = Qcond = Geonv - Grad + evap (3.47)

Radiation
The radiative flux assumed to be input at the surface is given by (2.22) and
(2.24):

Qrad = Fe 6 TR4 (1 - 1/ (m(TR)S + b(Tg) + D] - Hc & (3.48)

Convection

The droplet is assumed not to disturb the natural convection patterns
established before deposition. In addition, the convective term will be seen to

be only 1-2% of the total flux. Then the convective flux is

qconv = h (T; - Ta) (3.49)

where h is given by (3.22).
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Evaporation
The Chilton-Colburn analogy and Lewis number Le predict a mass transfer

coefficient hy, which when coupled with the expression for total molar flux N

will lead to an expression for gevap:

Nj = [diffusive flux] + [bulk motion] = Ji* + C; v* (3.50)
using Fick's Law, Nj=-CD dx1/dz + x1 (N1 + Nair) (3.51)
neglecting the solubility of air in the droplet, Nair=0

then N = -CD (dx;/dz) / (1 - xp

and at the interface, Nj = -CD (dxi/dz) / (1 - xj) (3.52)
the definition of hy,is  Ji* = hy, (G- Cla) (3.53)
then hp, C (xj - Xa) = -CD (dxi/dz)

and dxj/dz =-hy, (xj-Xa) / D (3.54)
finally Nj = C hy, (xi - Xa) /(1 - x) (3.55)
the Chilton-Colburn analogy is h / by, = Pair Cpair Le2/3 (3.56)

and C is approximately constant (ideal gas behavior of air-vapor
mixture) at the ambient value: C =Cajra = pair / Mair  (3.57)
also qevap = Nl A M] and Ml / Mair = 0.624 (3-58)

therefore  Qevap = 0.624 (h A Le'2/3 / cpair) (xi - Xa) /(1 - x3) (3.59)

This detailed development reveals the sources of uncertainty in the
evaporative term: the insolubility of air in the droplet and the Chilton-
Colburn analogy and its 2/3 exponent. The property values of air, ¢p,air and
Le, should be evaluated at the film temperature. The Chilton-Colburn
analogy, derived by equating the functional forms of the equations relating

Nusselt to Prandt] number and Sherwood to Schmidt number, makes the very
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reasonable assumption that the small evaporative mass transfer rates do not
influence the experimentally measured value of h. The liquid-vapor

boundary condition can now be written

-k 9T;/9z = h (T; - Ta) + 0.624 (h A Le-2/3 / cp,air) (Xi(T;) - Xa) / (1-xi(Tp)
-F o TR4[1 - 1/ (m(TR)8 + b(TR) + D] + He d (3.60)

The temperature dependence of xj in (3.60) is evaluated by making the
following assumptions: a) the interface is at thermodynamic equilibrium; b)
the air does not alter the partial pressure of the water vapor at the interface;
and c) the air and water form an ideal gas mixture. These approximations are
very reasonable for the laboratory conditions and are frequently made in

psychrometrics. Then
xi(Ty) = psat(T}) / pa (3.61)

where psat(T;) is given for every degree Celsius in the Keenan steam tables

[23].

Linearization

Because (3.60) is nonlinear in Tj, it cannot be directly used in the tridiagonal
solution. Furthermore, (3.60) cannot be used to develop an analytical
expression for the quasi-steady state temperature distribution. However, the
code time step is chosen to allow only small changes in the liquid-vapor
temperature between iterations. Then the temperature behavior of (3.60) can

be represented by a line tangent at the current value of T;. This line is simply

given by the first two terms of a Taylor series expansion:
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qeond(Ty) = qeond(Ti@) + (9qcond(Tig)/ 9Ty (T; - Tip) (3.62)
but qeond(Tj) =-k 9T;/0z = -k (AT; + B)=-k AT;-k B
and qcond(Ti) = (aQCond(Tio) /0Ty T; + CIcond(Tio) - (9qcond(Tip) /9Ty Tio

therefore A =-(dqcond(Tip)/9T;)) / k<0 (3.63)
B= [(aQCond(Tio) /0Ty Tjp - CIcond(Tio)] /k (3.64)
where qeond(Tip) = h (Tjp - Ta)

+0.624 (h A Le2/3 / cpair) (i(Tip) - Xa) / (1 - xi(Tjg))
F,oTgtll - 1/ (m(TRS +b(TR) + DI +Hed  (365)

The derivative may be found numerically, but the Clausius-Clapeyron

equation provides an eloquent and reliable analytic expression:

9qcond(T)/3T; = h +0.624 (h A Le?/3 / cpair) Alixi - xa) / (1 - x)1/3T;
but  3l(xi- xa) / (1- x))1/3T; = (2l - xa) / (1 -x)]/2x;} 8%/ 3T}

= [(1-xa) / (1 -xi)2] Alpsat(T;) / pal/9T;

= [(1 - xa) / pa(l - xi)2] Opsat/0T; -

=[(1-xa) / pall-xi)?] A / veg Tj
9qcond(T)/0T; = h + 0.624 (h A2 Le2/3 / pa cpair vig Ti) (1-xa) / (1 -x:)2

Therefore, the needed expression is

9qcond(Tip)/dT; (3.66)
=h +0.622 (h A2 Le-2/3 / p, Cpair Vig Tip) (1 - xa) / (1 - xi(T;p)?

where, of course, Tijp must be in absolute units.

As shown in Figure 24, the effect of the linearized boundary condition is to
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slide along the liquid-vapor flux curve and to overestimate slightly the
updated T;. For T; greater than 95°C the curve becomes very steep and the
linearization less accurate. However, the flux becomes rather stable at this
point in the evaporative process, and only small temperature changes are
expected. If the linearized boundary condition tries to assign an interfacial
temperature greater than 100°C, then T is assigned a value of 99.9°C, and the
liquid problem (tridiagonal transient or quasi-steady state) is solved using

two boundary conditions of the first kind.

Volume Flux

Because the initial volume of the droplet V cannot be measured with great

accuracy, there is little benefit to considering the small volume changes of the
droplet associated with temperature changes. Therefore, the droplet density
is assumed to be constant at the value of water at 20°C, 998 kg/m3. Thus the
droplet inventory can be made by volume rather than mass. In addition, the
small effect of temperature on the axial grid size is also neglected. The
following derivation gives the volume change calculated by EVAP during
each iteration in terms of the previously derived evaporative flux (3.59). The

summation is made over the NUMCOL annular columns of liquid.

N1j=Gevap,j/ A Mi

N1j M] = p1 (AVj/At) / Aj

AVj = qevap,j At Aj / A pi

but Aj=x { [[/NUMCOL] - [(j - 1)/NUMCOLJ? } Ry2

‘= nRg? (2 -1) / NUMCOL?
AV = (xRo? At / A pt NUMCOL?) 2.‘,'=1NUMCOL 2j - 1) Qevap,j (3.67)



Again a special case must be made for the event of a false calculation of Ti
greater than 100°C. The evaporative flux to be used in (3.67) is found from the

known conductive, convective, and radiative fluxes:

devap = qcond * qrad - Geonv (3.68)
where

tridiagonal: qcond = -k (Tn - Tn-1) / Az (3.69)
quasi-SS:  qeond = Hed + k(Ts - 100°C - Hc82/2K) /8 (3.70)
and Geonv = h (100°C - Ta) (3.71)
and rad = Fe 6 TR [1 - 1/ (m(Tg)3 + b(TR) + 1] - Hc 8 (348)

3.8 Liquid Model as a Function of Radial Position

The one-dimensional heat flux assumption limits the influence of one droplet
on another to shape change by volume flux and to communication through
the solid. The droplet shape (vector of annular droplet heights) has a strong
effect on the time required until 3T/at can be neglected and the quasi-steady
state solution substituted for the tridiagonal solution. This required time is
quantified through the nondimensional time or Fourier number Fo = at/82.
The annular columns will become quasi-steady state starting with the
thinnest, outermost column and proceeding inward. This is the rationale for
the liquid solution structure as illustrated in the code flowchart (Figure 22).
Provisions to change back to the transient solution are not needed because of
the smoothly and slowly changing temperature profiles keep dT/dt
negligible. The flowchart does have the provision for when the droplet is
completely evaporated (or for geometry Model B, the droplet recedes past
the column) that the liquid solution is bypassed and the solid-vapor

boundary condition invoked. How to decide when to invoke the quasi-
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steady state solution and the scaling problem of the outermost columns are

discussed below.

Inception of Quasi-Steady State Solution

For the assumption of negligible residual volumetric heat generation, the
linearity of the temperature profile indicates how close the column is to the
quasi-steady state solution. The ratio of solid and vapor boundary fluxes
indicates the linearity. Furthermore, the solid boundary flux starts high and
decreases while the vapor boundary flux starts negative (radiation
overpowers evaporative flux for early, low liquid-vapor interfacial
temperatures) and approaches the solid flux. Thus the mechanism for

changing the solution mode is

FLUXR = (Tn - Tn.1) / (T2-T1)
IF (FLUXR .GT. PERC/100.) THEN (PERC set by user (0.97))

SSTi = (Tn + Tn-1) / 2 (transfer liquid-vapor temperature)
NTRANC = NTRANC -1 (decrement no. transient columns)
END IF

If Hc is not set to zero, then another approach must be used. Performing an
investigative quasi-steady state solution on the outermost transient column
during each time step and comparing solid boundary fluxes between the two
models may be the most straightforward technique although directly

calculating dT/dt values is a possibility. This point must be addressed if the

code is to be used with nonzero values of H.



Difficulty with Outermost Columns
In order to capture the transient behavior of the thinnest, outermost columns,

very small and computationally expensive time steps (order of 0.01 s) must be
used; the Fourier number varies with the inverse square of 8. The BEM is
extremely sensitive to time step size because it requires integration back over
the previous time steps for each iteration. (The number of BEM computations
varies with the inverse square of time interval, and the BEM accounts for
more than half of the run time.) In fact, the outermost column may reach
quasi-steady sate status before the heat wave reaches the droplet apex. If too
large time steps are used in the Crank-Nicholson method, large erroneous and
oscillating heat fluxes will be fed to the BEM destroying the credibility of the
results. Thin droplets with large Bg are particularly a problem. Fortunately,
because the transient behavior of these very thin columns is short, the BEM

can tolerate flux estimates from these thin, transient columns.

These thin columns are designated as quasi-steady state in the variable
initialization stage of code execution. The Fourier number is the tool used to
decide how thin a droplet must be to be assigned this special treatment. As
the applicable nondimensional time, the Fourier number describes how far
along in the transient process is the initially uniform temperature liquid
column. A related problem suggests a threshold for Fo. Consider a column
of unit thickness and unit diffusivity initially at temperature zero when one
boundary is forced to temperature 1. Omitting the details, the transient
temperature distribution can very accurately be represented by the first term

of the eigenvalue solution:
Tz, t)=1-2- (2 /) exp(-n2 t)
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The time until the midpoint reaches to within 98% of its steady-state value is

calculated as

1-0.5-(2/7) exp(-n2 t*) = 0.49
t* = -In(0.01n/2) / n2 = 0.421 (3.72)

The quantity t* is the Fo number for this system. Experimentation with 0.421
as the threshold worked very well as there were no erroneous oscillations, and
usually only the outermost one or two columns was affected. This solution to
the thin-column problem works for any reasonable initial droplet geometry

(Bo and Vo).

A good initial liquid-vapor temperature is also required by the code to avoid
invalid results. A poor initial value can result in the linearized boundary
condition pushing the interfacial temperature past 100°C on the first time
step, and recovery back down the steep flux curve (Figure 24) requires an
unacceptable time. The following code is used to assign a sufficiently good

initial liquid-vapor temperature:

10  SST; = SST; + 0.1
IF (LVFLUX(SST;) - (Ts - SST;)/8 .GE. 0.0) GOTO 20
GOTO 10
20 CONTINUE

Again the case for nonzero Hc would add a complication here.



3.9 Droplet Geometry - Models A and B

As mentioned, the transient droplet shape must rely on an empirical model.
Model A assumes a sphere segment shape and is defined by two inputs, the
current volume V and the initial shape factor Bo, (or equivalently the wetted

region radius Ro):

B = [current radius wetted region] / [radius of sphere with equal V]

=2R/(6V/m1/3 (defined by Bonacina [2]) (3.73)

Because droplet surface tension is a function of temperature, and radiation is
mostly absorbed at the droplet surface, the radiation can be expected to have
a significant effect on fo. However, EVAP takes o as a measured quantity
and does not directly address this issue. Model B assumes a pancake shape
and also allows input of the initial solid-liquid contact angle 6p and a .

receding contact angle 6.

Model A

Photography of evaporating droplets suggests that the segment of sphere
geometry may adequately describe the transient shape. Using analytic
geometry the center of the sphere is adjusted axially until the sphere segment
has the current volume V and the sphere boundary contains the solid-liquid-
vapor interface. The expressions for 8(r) were developed by diMarzo and

Trehan [5], checked by the author, and are repeated in the following:

y=(a/Ro) = [4/P3 + (1 + 16/P6)1/2]1/3 4 [4/B3 - (1 + 16/P6)1/2]1/- 3.74)
&(r)/Ro = [(1/y+v)2/4 - t/Rp)2]V/2-(1/y-)/2 (3.75)
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The dependence of the contact angle 6 on the current value of B [5] is given in
Figure 25. Model A updates the model shape when SUBROUTINE UPGEOA
is called.

Model B

Evidence compiled by Chandra [24] shows that the droplet shape is somewhat
flat, especially early in the evaporative process. Late in the evaporative
process the wetted region begins to shrink as the receding contact angle 6, is
reached, and the droplet surface tension and surface adhesion forces come
into balance. EVAP uses a 8 value of 7°, a value suggested by Simon and
Hsu who used experimental photographic techniques [25]. Model B has these
two properties by making the following assumptions (as illustrated in

Figure 26):

(1) When 6 is reached, the droplet shape may be considered to be a
segment of a sphere. This assumption is reasonable because the
spherical shape minimizes surface area before shrinking of the wetted
region can begin. At the inception of this shrinkage the droplet has a
unique volume. The aspect ratio remains constant as the droplet
recedes.

(2)  The initial volume is the sum of a flat cylinder and a solid of rotation
with outer surface tangent to the cylinder top face, with an acute
contact angle 89 with the semi-infinite solid surface, and of circular arc
profile.

(3)  The gradual transition from initial shape to receding shape is uniquely
specified by stipulating that the intersection of the horizontal tangent to

the surface at the apex and the tangent to the liquid at the solid-liquid-
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vapor contact point is always on a straight line. This convention
reasonably approximates the experimental observations.

(4) The droplet apex will always be at or less than its initial value. Surface
tension cannot force the droplet to pop up against gravity during

evaporation.

These assumptions have the effect of putting maximum and minimum limits
on the initial contact angle 8g. No shape meeting the four assumptions can
contain the initial volume of liquid for values of 8 less than the 8¢p value
given by the spherical segment configuration (Model A). Assumption (4) sets
a maximum 8 for the configuration with initial apex equal to the apex at the
inception of shrinkage of the wetted area. Another upper bound for 6y is set
at 90° by Chandra [24] for evaporating and boiling droplets (nucleate boiling).
A geometrical calculation shows that for Bg less than 2.79, the maximum 6g as
given by assumption (4) will always be greater than 90°. If one neglects the
small recoil effect observed by Chandra [24], then 90° may be a good value to
use. On the other hand, the 6g can be chosen as the value that yields the
evaporation times and temperature profiles most closely matching the
experimental data. Perhaps the Tsg and impact velocity dependence of 8p can

be discerned this way.

Model B is invoked by calling SUBROUTINE UPGEOB, which was written
by S. Tinker as part of an undergraduate project. It was slightly modified by
the author to interface properly with the main routine, and the author
thoroughly tested the subroutine for proper operation. The detailed
workings of the 280-line subroutine are not explained here, but the code

basically chooses among several potential types of droplet shape based on the
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initial and current values of certain volumes.

3.10 Coupling of the Liquid and Solid Domains

The liquid and solid domains interact through the transfer of fluxes from the
liquid to the solid and of solid-liquid interfacial temperatures to the liquid.
The BEM solid solution uses fluxes at the center of the time intervals and
gives surface temperatures at the end of the time intervals. The liquid
solutions take the BEM temperatures and move up in time to the end of the

time intervals producing fluxes valid at the ends of the time intervals.

The simple predict-correct method, illustrated in the code flowchart

(Figure 22), solves this mismatch in times while improving the reliability of
the numerical results. Rolldown of the forcing function matrix FRCFNC
refers to bumping values back in time as the new value is input. Rolldown is
not made in the update of the forcing function matrix following execution of
the predictor loop because the next BEM call will average the predicted
fluxes and last corrected fluxes (from the same time step) to get a value
representative of the center of the time interval. The resulting BEM
temperatures are the corrected values. Because only the integration over the
first recollection interval is new to this BEM call, significant computational
time (on the order of 40% of the run time without this feature) is saved by
using the integration values minus the first recollection step values (vector
PREDU) in the corrected BEM call (SUBROUTINE BEM2). After time is
incremented, the liquid corrector loop uses the corrected temperatures and
the liquid temperatures from the last corrected loop execution to calculate
the corrected fluxes. (The calculated predictor loop liquid temperatures are

discarded.) These fluxes, valid at the beginning of the time interval, are given
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to SUBROUTINE BEMI for calculation of predicted surface temperatures,

which are then inputted to the predictor loop. The cycle continues.

3.11 Calculation of Property Values as Functions of Temperature

Rather than pick representative values for most properties, the author chose
to use the available computational power to use curve fit polynomials and
function calls for property value evaluation. Then the effect of using
representative values can be investigated and the. use of property functions
discontinued if warranted. However, it is the BEM and its thousands of calls
to the bessel function sublibrary that is by far the most computational intense
section of code. Following are brief descriptions of the sources and curve fits

“of the property data. Plots and tables are given in Appendix C.

Lewis Number Le

The Lewis number, a/D, is central to the evaporative boundary condition
because it allows the use of the experimentally measured convective heat
transfer coefficient h to calculate the rate of mass transfer. The air value for a

was constructed using data from [26] while D, given by [27], is
D = 0.2232 (T/273) cm2/s 273 <T<370K (3.76)

The resulting temperature dependence for Le (Figure 48) is small, and a
representative value of 0.845 at 60°C is chosen. This value compares favorably

with Le number data from another source.

Constant Pressure Specific Heat of Air cpair

The Chilton-Colburn analogy requires this quantity. Because it varies only
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0.7% over the range of interest, a curve fit is not required. However, Figure 49

gives a five-point, quadratic least-squares fit anyway. The data is from [26].

Water Vapor Interfacial Mole Fraction x;
The temperature dependence of this quantity, psat/Pa, is crucial to the liquid-

vapor boundary condition, so Table 2 was constructed for every degree C
from the Keenan steam tables [23]. Figure 50 shows the exponential-like

behavior of the interfacial mole fraction.

Ratio of Latent Heat to Specific Volume Change A/v¢g
This combination is from the Clausius-Clapeyron equation and is also
constructed from the Keenan steam tables [23] in Table 2. Figure 51 gives the

temperature behavior. A/vgg and x; are input to EVAP through DATA

statements.

Latent Heat of Vaporization of Water A

The six term curve fit formula given by Bejan [28] and suggested for
computer applications is used. The formula and its constants are listed in

FUNCTION HFG.

Thermal Conductivity of Water kj

Values for k every five degree C from [16] were used in the fifth order
polynomial fit of Figure 52. The thermal conductivity varies 13% over the
range of interest. Of course, the linear quasi-steady state model demands a
single value of k, and it uses the value at the current average of the boundary
temperatures. The temperature difference between droplet boundaries will

be seen to be small for the quasi-steady state solution. The error function
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semi-infinite solution also uses such an average value.

Thermal Diffusivity of Water o
The thermal diffusivity, k/pcp, was constructed from the data in [16] using

Table 3. It varies 15% over the range of interest, and the fifth order
polynomial fit is given in Figure 53. Again an average value is used in the

semi-infinite solution, particular to the user's choice of input temperatures.

Density of Water pj

The curve fit for the density of water is not used as was discussed in
subsection 3.7; the value at 20°C, 998 kg/m3, is used. However, the
temperature dependence of the density of water is included in Table 3 [16] for
the calculation of thermal diffusivity. The density varies 4% over the range of
interest. The fifth order polynomial fit (Figure 54) is very accurate, more
convenient than the available equations of state, and may find other

applications.



4. SECTION III - RESULTS AND COMPARISON WITH LAB EXPERIMENTS
After the code was fully debugged and in its final form, 20 runs were made in
order to make comparisons with the single-droplet experimental results of
Dawson [13] and perform a preliminary parametric study. The specific

conditions for the experimental validation are

Vo=10p); Tso=130°C; Tr = 510°C; Bo = 1.61

for which 1=24s on average

The By value is subject to significant experimental error because of the
difficulty in discerning the droplet edge in Dawson's setup: the edge was
implied by the temperature line scan data. Therefore, Runs 1 through 9 are
devoted to the variation of Bg. Runs 10 and 11 investigate the effect of initial
volume Vg while Runs 12 through 15 varied the initial temperatures. Use of
geometry Model B was saved for Runs 16 through 19. Finally Run 20
investigated a limiting case, that of a cylindrical droplet shape with constant
wetted area. The code inputs (Tsg, TL, TR, geometry model, Vg, Bo, and 6g
(geometry Model B only)) and the principal output, the evaporation time 1,
are given in Table 1. Also given are the time required for all annular columns
to reach quasi-steady state status and the temporal/spatial averaged solid-
liquid heat flux. The qdisk data refer to the constant heat flux model discussed
in subsections 4.6 and 4.7. The figures in this chapter and Appendix D

identify which inputs the graphed output is for by reference to run number.

Figures 27 and 28 clearly show how the droplet steadily decreases in size until

it is completely vaporized. The Model A droplet maintains its spherical
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Droplet Height: Run 5 (Geometry Model A)
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Droplet Height: Run 16 (Geometry Model B)
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segment shape at all times while the Model B droplet displays the more

complex behavior for which it was designed.

Figure 29 shows the cumulative energy transfers across the droplet boundary
that must in the end add up to the latent plus sensible energy change in the
original droplet mass. The conduction component is initially high because of
the large temperature gradient at the solid interface. The direct radiation
component is a almost straight line because it is not a function of any droplet
temperature (it is a slight function of droplet thickness). The percentage of
energy transfer by radiation is mostly just a function of wetted area and
evaporation time since the flux is nearly constant. The percentage is

approximately 15% for the run illustrated.

Figures 30 through 40 display the temporal and spatial behavior of the solid-
liquid flux, BEM forcing function, liquid-vapor temperature, and solid
surface temperature for one case each of geometry Models A and B. The heat
fluxes are highest at the droplet edge simply because the droplet is thinnest
there. The effect is more pronounced for Model A as expected because of the
larger very thin region. The forcing function graphs are just the flux graphs
inverted and translated, but they do show how small the forcing function
becomes outside the wetted area. There the only contribution is the
convection and re-radiation due to the temperature depression from initial
conditions. The oscillating behavior of the flux and forcing function for early
times near the droplet edge originates from the discreteness of the numerical

grid and would diminish with decreases in the radial and time steps.

The liquid-vapor temperature graphs show that the upper surface is hotter at
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Spatial Profile of BEM Forcing Function: Run 5 (Geometry Model A)
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Spatial Profile of BEM Forcing Function: Run 16 (Geometry Model B)
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the thin edge and that as the entire droplet reaches quasi-steady state status, Tj
becomes fairly uniform. The solid surface temperature graphs show that for
the combinations of inputs used the influence of the droplet is practically
restricted to a disk of radius 4Rg. Additionally, after a short initial period, the
solid surface temperature under the droplet becomes fairly uniform. This
behavior was also produced in the theoretical results of Liao [12] and is due
to the high fluxes at the droplet edge providing extra cooling to that annular
region of the solid. Therefore, there is a straightforward relationship between
solid surface flux and temperature as would be expected in a linear system.
Figure 39 shows that the solid surface temperature profile has time to shift
along with the droplet recession. In fact, Figures 37 and 40 show that the

surface temperature begins to quickly recover after the droplet has vanished.

The transfer of liquid solution control from the transient to quasi-steady state
solution is illustrated by Figure 41. Every time the quantity FLUXR reaches
0.97 the outermost transient column becomes quasi-steady state. The inner
annular columns reach this status nearly at the same time because the droplet

thickness is somewhat uniform there.

4.1 Effect of Shape Factor By

Figure 42 illustrates the effect of wetted surface area for the 10 ul droplet. The
upwardly concave form for the curve indicates that the evaporation time

decreases that come with increased surface area (goes with square of fp) are
not as large for large Bg. One possibility for this effect is that the nearly-
constant radiation component has less time to make its contribution to

droplets with lower evaporation times.
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The figures of Appendix D.1 illustrate more of the model behavior. The
volume graph shows the steadiness of the dropwise evaporative process. The
volume rate of change curves show how the evaporation mass transfer rates
increase with liquid-vapor temperature. The nonsmooth features around 5 s
for high Bo possibly indicate numerical inaccuracies caused by the switch to
the longer time interval. However, for small g the switch is remarkably
smooth. The droplet bottom surface spatial average flux graph demonstrates
the temporal behavior of the conduction contribution. After the high initial
values, the average flux becomes roughly constant. Furthermore, the
behavior is almost independent of By, meaning that the temperature
difference across the droplet and droplet thickness effects cancel each other
out. Figures 60 through 68 show precisely how the droplet upper and lower

surface temperatures approach each other as the droplet thins.

The recollection memory curves (Figure 69) show that solids with more
compact droplets (small Bo) require less recollection time than solids with
spread out droplets to know their present state. At the point that the droplet
vanishes memory increases all the way back to deposition because the strong
and recent forcing functions are gone and no longer overpower relatively
long past events. The exponentially decaying behavior of the Green’s
functions makes it surprising that the memory should be as great as shown.
The reason is that the Green's functions tend to level off for recollection times
from 10 to 30 s and that the early forcing functions are the strongest; the effects

compensate and the memory remains long.

4.2 Effect of Initial Volume Vj

The wetted area (and Rp) was kept constant in this investigation in an attempt
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to learn independently the effect of the uncertainty in the experimental value
of Vg. The effect was to cut T from 32to 28 s for a 1 pl decrease in initial
volume. The relationship between Vg and  is nearly linear for small changes
at least in this case. Appendix D.2 gives the graphical results for this small
parametric study. Figure 71 shows that the thinnest droplet (smallest Vo) has
only a slightly higher mass transfer rate (as would be required for the linear

relationship between Vg and 1).

4.3 Effect of Initial Temperatures

This investigation clearly shows the strong sensitivity of the solid-droplet
system to initial solid surface temperature. Raising Tsp 20°C from 120 to 140°C
cut the evaporation time by almost 40%. The system is far less sensitive to
changes in the initial liquid temperature and radiant panel temperature. This
can be explained in that the sensible energy change in the droplet and the
radiant contribution are relatively small parts of the required energy.
Quantitative outputs are found in Appendix D.3. As expected the droplet
initially at 60°C takes less time to get up to the maximum mass transfer rate

than its 20°C counterpart.

4.4 Effect of Geometry Model

Implementation of geometry Model B produced some very interesting
results, found in Appendix D.4. Figures 82 and 83 show that Model B results
in longer evaporation times not because of the larger value of 89 but because
of the slow down in volume flux after droplet recession. In fact, Figure 84
shows that time to reaching the receding contact angle is nearly independent
of initial contact angle. The similar plot with time scaled to 1 (Figure 85)

shows that the effect of increasing B is to reach recession comparatively
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faster. The volume plot (Figure 82) suggests that the special cylinder-
geometry-model droplet would have the longest evaporation time of the Bp =
2.0 droplets if it had a receding property. This coupled with the observed
order of the curves leads to the conclusion that evaporation time increases
slightly with 6g, all other quantities equal. Severe local thinning at the edge,
where area is greatest, is more efficient at pushing flux through the wetted

area than moderate thinning throughout the droplet.

4.5 Comparison with Experimental Results
Comparisons between the theoretical and experimental results can be made in
two ways: through the evaporation time and through the radial and temporal

solid surface temperature dependence.

Evaporation Time Comparison
If one accepts all the values given by Dawson [13], then geometry Model A

predicts an evaporation time 33% too long and Model B 58% too long.
However, there are several reasonable explanations that the source(s) of the
discrepancy may be related to the experiment (possible sources of

discrepancy related to the code are discussed in Chapter 5):

(1)  Kidder [8] performed experiments very similar to Dawson's and
measured an average T of 31.2 s for an average Bp of 2.0. This is very
close to the 32 s of Model A. Kidder's radiant panels were of a different
geometry, but this effect can be argued not to be significant for several
reasons: a) Chapter 2 showed that the reflectivity dependence on
incident angle cannot be expected to change Fe much; b) overall energy

balances and equal Tsp values mean that the radiative fluxes should be
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close; and c¢) the spectral dependence of Kidder's incident radiation (Tr
value) would not be too different from Dawson's. Then, the simplified
radiation model predicts very similar droplet behavior.

(20  Po was difficult to experimentally measure in Dawson'’s setup. Also
radiation-induced surface tension relaxation at the droplet edge may
mean that Rg was really larger than it seemed.

(3)  Slight errors in the measurement of Vp or Tsp could have significant
effect on evaporation time.

(4) Dawson measured evaporation time by marking the time at which the
video tape showed the temperature profile begin to snap back toward
the initial conditions. Results using geometry Model B showed that the
snapping back of the temperature profile would begin at the point of
recession not complete evaporation. Figure 82 shows that this effect

may be on the order of 4 or 5 s.

Solid Surface Temperature Profile Comparison

This comparison is greatly complicated by the difference in evaporation
times and uncertainty with Bg. The Bg = 2.0, Model A theoretical results were
used for comparison because of the agreement with Kidder's value of Bo.
Discrepancies in Bp values cause a scaling problem with the experimental
data, which is given as a function of r/Rg. The purpose of Figures 43 and 44,
which show the temperature profiles overlayed, is only to demonstrate the

agreement of the general behavior of the theoretical and experimental Ts.

4.6 The Constant Heat Flux Approximation
The spatial and temporal behavior of the solid surface fluxes suggest that the

classical constant heat flux solution might be a useful model of the
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evaporative process. Carslaw and Jaeger [29] and later Beck, et al., [20]
showed that for a semi-infinite solid surface suddenly subjected to a constant
and uniform heat flux q out of solid over a circular region of radius R with no

other heat transfer on the remainder of the surface:

Tso - T(r, 0, t) = (QR/ks) ION Jo(Br/R) Ta(B) (1/P) erf [Blast)1/2/R]1dB (4.1

This expression can be developed using the Green's function solution
equation (GFSE) and judicious analytical integration. The integration on B
originates from the particular Green's function expression most amenable to
the problem. This solution has no provision for the case when the droplet is

evaporated and the surface temperature begins to recover.

The author overcame this limitation by changing the limits on the recollection
time integral of the GFSE from (0, t) to (t- 1, t) where t - T is the time since the
flux disk was suddenly removed. After lengthy manipulations the solution

valid for times before and after disk removal is obtained:

Tsp-T(r,0,t) = .
(qR/ke) Jo°° Jo(Br/R) J1(B) (1/P) ferf [Blast)1/2/R] - erf [Blast*)1/2/R] } dP

where t+=0 fort<=t

tt=t-1 fort>1 4.2)

Note that as t approaches infinity both error functions approach 1 and cancel

each other so that the initial temperature Tsg is restored.
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4.7 Comparison with the Constant Heat Flux Model

Because there is an initial flux in the droplet-solid system, the value q in (4.2)
must be defined to include the effect of subtracting out the initial conditions.
Recall that the full GFSE includes a term for initial conditions that can be

ignored only by mapping to another domain. The required definition for q is

q=qdisk-qo Wwhere qdisk > 0 and qp < O for the radiation case 4.3)

The initial flux qo is obtained by an overall energy balance. The conductive
flux qdisk is an output of EVAP that may be curve fit for conditions of interest
to use in (4.3) and (4.2). Alternatively, the theoretical or experimental

evaporation times can be curve fit, and an energy balance around the droplet

used to find qgisk:

qdisk R21+ Qrad T R21- Jconv T R21=p VgAh
qdisk =P1 VoAh / = R2t + qconv - qrad (4.4)
where Ah = cp AT + A

and AT is a representative value of the droplet temperature change before

evaporation.

The computer code needed to implement (4.2) is given in Appendix E. The
subroutine QAGI is called to a system library in order to perform the difficult
semi-infinite numerical integration. The argument is a bessel-type damped
oscillation which is difficult to integrate conventionally. In addition, the

subroutine requires the code to be compiled in double precision mode.



Typical results are given in Figures 45 and 46. The curves compare very
favorably with the EVAP theoretical and experimental data. Note that the
temperature profile plateaus under the droplet are curved for the constant
flux model. This is expected because the high edge fluxes are brought down
to the average. The inability of the model to duplicate the behavior of droplet
recession, especially for high o (early recession), is a weakness. However, an
additional curve fit to theoretical or experimental data by mapping t to some
function of t in (4.2), i.e. replacing t with f(t), could improve the model
validity. Another approach is to superimpose two concentric disks of
variable relative strengths or areas. Use of a validated constant flux model is

the current approach for a multi-droplet code in this line of research.

4.8 Use of the Constant Heat Flux Model to Test the BEM

As was mentioned in the subsection on the BEM, the constant heat flux model
was used to validate the BEM section of EVAP. The procedure was simply to
redefine the forcing function to be 1 for r <1 and 0 for r > 1.  All other
quantities were also nondimensionalized. The nondimensional form of (4.2)
was also computed. The nondimensional temperature profiles are compared
at three times in Figure 47. The maximum deviation is about 1.5% of the full-
scale temperature and occurs around an r value of 0.5. This test says nothing
directly about how adequate the BEM grid size is for r > Rg because the
forcing function is zero there. However, the forcing function is normally
small for r > Ry, and the grid size is Rg/12 for r < 4Ro. Therefore, the author

concludes that the BEM section of EVAP is functionally well.
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5. CONCLUSIONS AND RECOMMENDATIONS

The code output clearly demonstrates that the program is functionally
smoothly with no numerical glitches. However, some further
experimentation may help to shed light on the experimental deviations.
Other combinations of Tsg, TR, Bo, and grid size will surely help. It is
improbable that the radiation model is the source of the deviation because of
its relatively minor role for the Tsp = 130°C case; increasing the radiative flux
50% in Run 13 did not change the evaporation time. The geometry models are
always questionable because they are empirical simplifications. Attempting
to validate the program using Kidder's data [8] may be the most
straightforward approach. The code was written to ensure that future

researchers could carry on the work without a steep learning curve.

Although this effect did not appear in the results given in Chapter 4, the
EVAP code has been observed to grossly overestimate the wetted region heat
flux for the last time step with evaporation. This is possible if the droplet
vanishes in the early portion of this time step. Because the droplet is very thin
in this case, the calculated flux is very high and not representative of the
entire time step. The remedy is to replace the false high flux with the uniform
flux that would be needed to evaporate the remaining liquid over the entire
time step. The following should be inserted immediately above the updating

of the droplet volume:

IF (V .LT. DV) THEN
DO 185 ] = ,NUMCOL
IF (DEL()) .GT. 0.)
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+ FLUX(J) = V * RHOH20 * HFG(SSTI(J)) / (PI * RADIUS#**2 * DT)
185 CONTINUE
END IF

The expression for the constant heat flux model helps to explain one
difference between the cases of heating by conduction from below and by
radiation from above. For equal but opposite initial fluxes qo, the q quantity
of (4.3) has a value 2qp larger for the radiation case. Thus the temperature
depression is greater for the radiation case, and the temperature at the solid-
liquid interface can be expected to be lower. Another point of view is that the
heat flux has the more difficult path to go from the solid surface down,
radially in, and then up into the droplet. In the conductive case the path is
straight up into the droplet. The effect of direct radiation to the droplet and
radiation-induced surface tension relaxation of the droplet (increased B)
counteract this enhanced temperature depression effect. The result of these

compensating effects is rather similar evaporation times.

Future uses for the code with minor modifications include the following:

(1 Calculate the H(z) and F(z) functions for TR values beyond those easily
possible in the laboratory using the radiation model code. Pick
nonzero H¢ values and investigate the effect of high temperature
incident radiation. The magnitude of the radiative flux can be kept
reasonable by using small view factors.

(2)  Radically alter the liquid material properties in order to test the
-ooling behavior of other liquids or hypothetical materials.

(3) Investigate in detail the effect of the solid properties (thermal

conductivity and diffusivity).
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Appendix A QuickBASIC Code for Radiation Model
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REM Program FRAD.BAS calcu
REM as a function of z (distance
REM for ftheta using the trapezol

CLS ]
DEFDBL A-H, 0-2
CONST pi = 3.14159265358979#

DIM NumLam(l TO 3)
DIM dlam(l TO 3)

numloop = O

INPUT "Enter the Coil Temperature Tcoil (C): .
INPUT "Enter the ljocal distance from the surface z

Tcoil = Tcoil + 273.15%

Cn = 1.33#%
C1 = 3742000004
C2 = 14390#

REM Read in ftheta values
DIM fdata(0 TO 900), cthetadata (0 TO 900}
OPEN «p:\FTHETA.DAT" FOR INPUT AS #33
FOR K = 0 TO 900

INPUT #33, thetadata (K},
NEXT K
CLOSE #33

fdata (K)

dtheta = pi * .1% / 1804%
NumLam{l) = 16: NumLam(2) =
dlam(l) = .05#%: dlam(2) = 24

20: NumLam{3) = 10

dlam(3) = .5#

SUM3 = O#%
FORJ =1 TO 3
sSUM2 = 0%
FOR Ilam = 0 TO NumLam (J)
SUM = O#%
READ wl, alam
tau = alam * (z / 10#)
E=2Cl / (wl ~ 5# * (EXP(C2 /
PRINT "E = *; E, wl = "; wl,

‘z in mm,
(wl * Tcoil))
*tau = "; tau

SUM = SUM + O#%
FOR thetad = .1% TO 89.95#% STEP .1#
theta = pi * thetad / 180#

REM Retrieve ftheta

K = INT(thetad * 10 «
ftheta = fdata(K)
thetainput = thetadata(K)

.S)

REM Calculate rho

u = (Cn ~ 2# - SIN(theta) =~ 2#) ~
Rperp = ((COS(theta) - u) /
Rpar = ((Cn ~ 2% * COS (theta) - ul /
rho = (Rperp + Rpar) / 24

.54

REM
A =
cmu =

Calculate mu (cmu here)

.75% * SIN(theta)

COS(ATN(A / (1 - A © 24) ~ .5%))
ftheta, K, rho,
*+ SIN(theta) *

PRINT thetad, thetainput,
funct = ftheta * COS(theta)
SUM = SUM + 2% * funct
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(CoS(theta) + u))
(Cn ~ 2# * COS(theta) + u)) -~

cmu
(1% - rho)

lculates the Radiative Flux Frad
to surface) given the file FTHETA.DAT
dal rule of double integration

‘Highest Number for Jth Segment of Integral
'wavelength step size in um for Jth Segment

Tcoil

(mm) : ",z

‘Three Integration Segments are Necessary

alam in cm™-1
- 1))

‘First value is 0

~ 24
2%

* EXP(-tau / cmu)



SyM = SUM + 0# -éast Valuti ésdo' ;
T . ‘E not included in funct
§g¥m ?%"'Eif.f""'ﬁ"""l

PRINT *"SUM = " SUM, "SUM2 = ": SUM2, °"SUM3 = *; SUM3
"i"'ﬁ'"ti""'tl
FOR Idelay =1 TO numloop: NEXT Idelay
IF Ilam > 0 AND Ilam < NumLam(J) THEN
SuM2 = SUM2 + SUM * dtheta
ELSE
SUM2 = SUM2 + SUM * dtheta / 2#
END IF
NEXT Ilam

PRINT '++~++4--r+++++++¢++++<—¢+¢++¢¢-+++++¢+¢+++"
PRINT °*SUM2 = *; SsuM2 :
PRINT "++++++++++++-¢¢++++++++++++++¢-++++¢++¢"
FOR Idelay =1 TO 2 * numloop: NEXT Ildelay
SUM3 = SUM3 + SUM2 * dlam(J) / 2#

NEXT J

PRINT °*SUM3 = *; SUM3
PRINT

Frad = 2% * SUM3 / 100#%

PRINT "Frad = ": Frad; " kw/m"2"
PRINT "z = "; 2; " mm*

PRINT *Tcoil = " Tcoil; * C*

REM Absorption coefficient of water alam (cm”-1) as function of wavelength

DATA .20, .0691
DATA .25, .0168
DATA .30, .0067
DATA .35, .0023
DATA .40, .00058
DATA .45, .00028
DATA .50, .00025
DATA .55, .000045
DATA .60, .0023
DATA .65, .0032
DATA .70, .0060
DATA .75, .0261
DATA .80, .0196
DATA .85, .0423
DATA .90, .0679
DATA .95, .388

DATA 1.0, .363
DATA 1.0, .363
DATA 1.2, 1.04
DATA 1.4, 12.4
DATA 1.6, 6.72
DATA 1.8, 8.03
DATA 2.0, 69.1
DATA 2.2, 16.5
DATA 2.4, 50.1
DATA 2.6, 153
DATA 2.8, 5160
DATA 3.0, 11400
DATA 3.2, 3630
DATA 3.4, 721
DATA 3.6, 180
DATA 3.8, 112
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REM RAD.BAS calculates the Volumetric Heat Generation Rate Hrad
REM z:ogrzﬁngtion of z (distance to surface) given the file FTHETA.DAT
REM for ftheta using the trapezoidal rule of double integration

CLS oz

DEFDBL A-H, O-

CONST pi = 3.14159265358979#%

DIM NumLam{l TO 3)

DIM dlam{l TO 3)

'Highest Number for Jth Segment of Integral
‘wavelength step size in um for Jth Segment

numloop = 0

INPUT *"Enter the Coil Temperature Tcoil (C): *, Tcoil

INPUT "Enter the local distance from the surface z (mm): ", 2z
Tecoil = Tcoil + 273.15%#

Cn = 1.33#

Cl = 3742000004

C2 = 14390#%

REM Read in ftheta values
DIM fdata(0 TO 900), thetadata(0 TO 900)
OPEN *A:\FTHETA.DAT" FOR INPUT AS #33
FOR K = 0 TO 900

INPUT #33, thetadata(K), fdata(K)
NEXT K
CLOSE #33

dtheta = pi * .1#% / 180#
NumLam(l) = 16: NumLam(2) = 20: NumLam(3) = 10

dlam(1l) = .05%: dlam(2) = .2#%: dlam{3) = .S#
SUM3 = 0%
FOR J =1 TO 3 ‘Three Integration Segments are Necessary
SUM2 = O#
FOR Ilam = 0 TO NumLam(J)
SUM = O#%
READ wl, alam
tau = alam * (z / 10#%) 'z in mm, alam in cm~-1
E=Cl / (Wl ~ S# * (EXP(C2 / (wl * Tcoil)) - 1))

PRINT "E = *; E, "wl = *; wl, "tau = "; tau

SUM = SUM + 0O#% ‘First Value is 0
FOR thetad = .1# TO 89.95#% STEP .1#
theta = pi * thetad / 180#%

REM Retrieve ftheta

K = INT(thetad * 10 + .5)
frheta = fdata(k)
thetainput = thetadata(K)

REM Calculate rho

u = (Cn ~ 2% - SIN(theta) ~ 2#%) ~ .5#

Rperp = ((COS(theta) - u) / (COS(theta) + u)) ~ 2#

Rpar = ({Cn ~ 2# * COS(theta) - u) / (Cn ~ 2# * COS(theta) + u)) "~ 2%
rho = (Rperp + Rpar) / 24

REM Calculate mu (cmu here)
A = .75# * SIN(theta)
cmu = COS(ATN(A / (1 - A ~ 2#) ~ .5#))

PRINT thetad, thetainput, ftheta, K, rho, cmu
funct = ftheta * COS(theta) * SIN(theta) * (1# - rho) * EXP(-tau / cmu) /
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SUM = SUM + 2# * funct

NEXT thetad
SUM = SUM + O#% ‘Last Value is O
SUM = SUM * E * alam 'E not included in funct

PRINT "I 2222022 22 20 Rl dl Nl
PRINT "SUM = "; SUM, °SUM2 = *; SUM2, °SUM3 = *; SUM3
PRINT v'*"'t'.tt'i"""t"t-
FOR Idelay = 1 TO numloop: NEXT Idelay
IF Ilam > 0 AND Ilam < NumLam(J) THEN
SUM2 = SUM2 + SUM * dtheta
ELSE
SUM2 = SUM2 + SUM * dtheta / 2#
END IF
NEXT Ilam
PRINT '++¢+++++++++¢+4—++++++¢¢¢++¢+¢+*¢++¢+++"
PRINT "SUM2 = *; SUM2
PRINT '++++¢++++++++¢¢+¢++¢+¢+¢¢¢¢#¢+++¢+++¢+'
FOR Idelay = 1 TO 2 * numloop: NEXT Idelay
SUM3 = SUM3 + SUM2 * dlam(J) / 2#
NEXT J

PRINT "SUM3 = *; SUM3
PRINT

Hrad = 2% * SUM3

DRINT *Hrad = *; Hrad: "~ kW/m"3°
PRINT "z = "; z; " mm"

PRINT *Tcoil = *; Tcoil: °= C*

REM Absorption coefficient of water alam (cm~-1) as function of wavelength
DATA .20, .0691
DATA .25, .0168
DATA .30, .0067
DATA .35, .0023
DATA .40, .00058
DATA .45, .00029
DATA .50, .00025
DATA .55, .000045
DATA .60, .0023
DATA .65, .0032
DATA .70, .0060
DATA .75, .0261
DATA .80, .0196
DATA .85, .0433
DATA .90, .0679
DATA .95, .388

DATA 1.2, .363
DATA 1.0, .383
JATA 1.2, 1.04
JATA 1.4, 2.4
DATA L.€, 6.72
DATA 1.8, 8.03
SATA 2.0, 69.1
CATA 2.2, 16.5
OATA 2.4, 50.1
OATA 2.6, 153
DATA 2.8, 5160
DATA 3.0, 11400
OATA 3.2, 3630
DATA 3.4, 721
DATA 3.6, 180
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Appendix B FORTRAN Code for Single-Droplet Model



SLENN WHITE

z {301) 405-5334
¢ ADVISOR: MARINO DIMARZO (301} 405-5257
¢ MASTER‘S THESIS -- UNIVERSITY OF MARYLAND AT COLLEGE PARK
¢  EVAPORATIVE COOLING WITH RADIANT HEAT INPOUT
¢ PROGRAM TO CALCULATE TRANSIENT SURFACE TEMPERATURE DISTRIBUTION
¢  WRITTEN FOR KIST CENTER POR FIRE RESEARCH
c
€234567
PROGRAM EVAPO1
Conns DEFINE COMMON BLOCK TO ALLOW SUBROUTINE UPGEOB TO KEEP VALUES OF CERTAIN VARIABLES STATIC
REAL BVAR1. BVARZ, BVAR3, BVAR4, BVARS, BVARG, BVAR7, BVARE, BVAR9, BVARLO
REAL SVAR1l, BVAR12, BVAR13, BVAR14, BVARLS
comMON /GEOBBL/ BVARL, BVAR2, BVAR3, BVAR4, BVARS, BVARG, BVAR7, BVARS,
. BVAR9., BVAR1O, BVAR1l, BVAR12, BVAR13, BVAR14, BVAR1S
Covwnn PARAMETERS WHICH MAY BE SET HERE BUT ARE NOW INPUT AS VARIABLES THROUGH THE MONITOR..........
Coun IHE TIME TO EXIT THE TIME STEP LOOP TEND IN §
c PARAMETER (TEND = 60.)
Covint THE INITIAL VOLUME VO IN Mes3
c PARAMETER (VO = 10E-09)
c..... THE INITIAL SHAPE PARAMETER BETAO
c PARAMETER (BETAO = 2.00)
Cont THE GEOMETRY MODEL DESIRED, ‘A’ OR 'B’
c PARAMETER (GEOMOD = 'B')
[ THE INITIAL CONTACT ANGLE THETAO IN DEGREES (>THETAA! (GEOMOD = ‘B’ ONLY)
¢ PARAMETER (THETOD « 60.)
[ THE INITIAL SURFACE TEMPERATURE (TSO}
¢ PARAMETER (TSO = 130.)
Gt THE RADIATIVE HEATER COIL TEMPERATURE IN C (475-650)
¢ PARAMETER (TCOIL = S10.!
Coonnn NEGLECT RATIO TO DECIDE WHEN TO TERMINATE MARCH BACK INTO TIME
c PARAMETER (NEGRAT = 0.01)
[ ROOT OF OUTPUT FILE NAMES (6 CHARS)
[ FILE NAME OF OUTPUT OF MAIN DROPLET PARAMETERS IS (FILNAM//'.dat‘)
[ FILE NAME OF OUTPUT OF SOLID SURFACE TEMPERATURES AND FLUXES IS (FILMAM//‘ .out’)
C.... FILE RAME OF OUTPUT OF SPATIAL DROPLET SURFACE TEMPERATURES AND FLUXES IS (FILNAM//’.ins*)
2. .. FILE NAME OF OUTPUT OF SPATIAL DROPLET HEIGHT AS FUNCTION OF TIME IS (FILNAM//'.geo’)
C.. FILE NAME OF OUTPUT OF CUMULATIVE ENERGY TRANSFERS IS (FILNAM//‘.bal’)
c PARAMETER (FILNAM = °2runOl’)
C.... NUMBER OF TIMES TO OUTPUT SPATIAL TEMPERATURE AND FLUX DATA
z PARAMETER (NDATTM = S)
C.. .SPECIFY TYPES OF THE INPUT VARIABLES CEFINED ABOVE

REAL TEND, VC. BETAO, TSCO. TCCIL. NEGRAT, THETCD
CHARACTER®*6 FILNAM

THARACTER®10 FILNAl. FILNA2. FILNAJ. FILNA4. FILNAS
THARACTER®1 GEOMOD

INTEGER NDATTM

PARAMETERS WHICH CAN BE ADJUSTED NERE WITHOUT ANY OTHER CHANGES -------scscvesscccccccncnronoonnnn
THE RECEDING ANGLE THETAR IN DEGREES GEOMCC « "B’ ONLY!

PARAMETER (THETRD » 7

THE AMBIENT TEMPERATURE

PARAMETER 'TAMB « 25 !

< THE INITIAL OROPLET TEMPERATURE

PARAMETER (TL » 25.)

_MINIMOM FLUX RATIO PERC TO DEFINE SS IN A TCL I G 99

PARAMETER (PERC o 97 .:

"0

“

“©

PARAMETERS NOT TO BE CHANGED MITHOUT CTMER "MANGES -----cv--seve-ccoecancaccccocmosreocncccosnann
MARNING: DO NCT ADJUST TIMES EXCEPT TENT WITHOUT THANGING SUBROUTINES RECONF, WEIGHT, AND WGHT
THE STARTING TIME STEIP DTSHRT IN §

PARAMETER (DTSHRT = J.1)

THE TIME STEP DTLONG IN S

PARAMETER (DTLONG « 1.0)

THE TIME TC USE THE STARTING TIME STEP TSHORT IN S

noan

n
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DPARAMETER (TSHCRT = 4.°
NOMBER OF ANNULAR COLUMNS TO MCDEL THE DROPLET

PARAMETER (NUMCOL = 12)

TOTAL NUMBER OF NODES N PER COL
PARAMETER (N = 12)
C..on THE NUMBER OF TIMES

SARAMETER (NUMBET = 100)
+HE NUMBER OF BEM NODES USED

{DZ=DELTA/ (N-2))

USED FOR THE BEM SUBROUTINE

C.oevs
PARAMETER (NUMNOD = 78)
co pu»m'n(pz - 1.1415926535897%)
VARIABLE TYPE SP:CIFICATIG'S'"""""""""""""""""'"""""""""
Covnns

REAL GAMMA, THETAO, THETAR. V. RADS, RADIUS, VR, RHOH20

REAL KLSIS. ALFSIS, EPSF, SIGMA, F, EPSILN, FRADG, FRADS

REAL KR, H, HO, FLUX®, TC. DT, KsS, FLUX0S, TIME, T1

REAL NFLUX, DVCOL, DV. KAVG, QC. SSFI, SSDFDT, SSA, SSB, SSTEMP

REAL EXPR, SSTOLD, FLUXR, SSTIME, EVTIME, THTIME, MEMORY. BETA., THETA., FO
REAL CONDUC, RADIAT, CONVEC. LATENT. MAXSEN, SENSIB

REAL TICONV, TICAVG, TAVG., FAVG

INTEGER I, J. K, L, NTRANC

CHARACTER*1 TSFLAG, TRNBGN, EVFLAG, THFLAG

DESCRIPTION OF VARIABLES (ALL UNITS ARE SI EXCEPT TEMPERATURE IN C):

. .GAMMA: CRANK-NICHOLSON CONSTANT: THETAO: INITIAL DROPLET CONTACT ANGLE;

. _THETAR: RECEDING CONTACT ANGLE (GEOM MODEL B ONLY); V: CURRENT DROPLET VOLUME;

RADO: INITIAL WETTED RADIUS; RADIUS: CURRENT WETTED RADIUS;

VR: VOLUME AT WHICH RECEDING BEGINS (GEOM MODEL B ONLY);

RHOH20: DENSITY OF WATER; KLSIS: SEMI-INFINITE SOLUTION (SIS) VALUE OF CONDUCTIVITY FOR DROPLET;

C..... ALFSIS: SIS THERMAL DIFFUSIVITY VALUE OF DROPLET;

C..... EPSF: ABSORPTIVITY OF DROPLET GIVEN DISTRIBUTION OF INCIDENT RADIATION BY POLAR ANGLE;

C..... SIGMA: RADIATION CONSTANT; F: THEORETICAL TILE VIEW FACTOR:

C..... EPSILN: SOLID EMMISIVITY: FRADO: RADIATIVE FLUX PENETRATING INTO SURFACE OF DROPLET:

C..... FRADS: RADIATIVE FLUX ABSORBED BY SOLID; HR: RE-RADIATION HEAT COEFF OF SOLID;

C..... H: CONVECTIVE HEAT COEFF: HO: OVERALL HEAT COEFF; FLUXG: INITIAL HEAT FLUX;

C..... TC: SIS CONTACT TEMPERATURE; DT: TIME STEP:; KS: SOLID CONDUCTIVITY;

C..... FLUX0S: SIS HEAT FLUX FOR TIME STEP 0.5; TIME: ELAPSED TIME SINCE DEPOSITION:

C..... TI:. LIQUID-VAPOR INTERFACIAL TEMPERATURE: NFLUX: MOLAR FLUX LEAVING DROPLET;

C..... DVCOL: CHANGE IN VOLUME OF ANNULAR DROPLET COLUMN; DV: CHANGE IN VOLUME OF DROPLET;

C..... KAVG: AVERAGE STEADY-STATE (SS) CONDUCTIVITY: QC: CONDUCTIVE HEAT FLUX:

C..... SSFI, SSDFDT, SSA, SSB, SSTEMP, EXPR, SSTOLD: 5S PARAMETERS FOR TAYLOR LINEARIZATION OF LIQUID-VAPOR BC;
C..... FLUXR: RATIO OF BOUNDARY TEMPERATURE GRADIENTS OF OUTERMOST TRANSIENT ANNULAR DROPLET COLUMN;
Co...n SSTIME: TIME UNTIL ALL COLUMNS REACH SS: EVTIME: TIME UNTIL DROPLET EVAPORATES:

C..... THTIME: TIME UNTIL RECEDING ANGLE IS REACHED (GEOM MODEL B ONLY)

C..... MEMORY: RECOLLECTION TIME AT WHICH EFFECT OF FORCING FUNCTION BECOMES NEGLIGIBLE (BASED ON NEGRAT);
C..... BETA: CURRENT SPLAT FACTOR (BASED ON RADIUS AND SPHERE OF CURRENT VOLUME) ;

C.o.... THETA: CURRENT DROPLET CONTACT ANGLE IN RADIANS (GEOM MODELS A AND B);

C..... FO: FOURIER NUMBER ALPHA*TIME/DEL(J)"1 USED TO DETERMINE IF COLUMN SHOULDL BE SS INITIALLY;
[ CONDUC, RADIAT, CONVEC. LATENT, MAXSEN. SENSIB: CUMULATIVE ENERGIES:

C..... TICONV: LIQUID-VAPOR INTERFACIAL TEMPERATURE: TICAVG: AREA AVERAGED TICONV:

C..... TAVG: AREA AVERAGED TEMPERATURE UNDER THE DROPLET:

... FAVG: AREA AVERAGED HEAT FLUX UNDER THE DROPLET:

C..... I. J. K: ARRAY INDICES; NTRANC: CURRENT NUMBER OF TRANSIENT COLUMNS:

c..... TSFLAG: FLAG -- '1° = (TIME > TSHORT!:

C..... TRNBGN: FLAG -- ‘1’ = THE TRANSIENT TRIDIAGONAL SOLUTION METHOD HAS BEGUN ALREADY;

C..... EVFLAG: FLAG -- ‘1‘ = (TIME » EVTIME):

C.o.... THFLAG: FLAG -- ‘1’ = (TIME » THTIME)

c..... eI e reeesneeerserIesrIrNrErerInNI I ResITRETIPeeesnTesEsOTReROETRIRTIEIRTRIEYERRSESS

C..... FUNCTION TYPE SPECIFICATIONS

REAL ALPHAL. CTHETA. CPA, DFDT. FRAD, HCONV, HFG. HV, KL
REAL LVFLUX, NH20, SISTC, SOLVAP, XI

C..... DIMENSION VECTORS AND MATRICES®*eossssessosscssscesncerssssostencannonve

C..... DIMENSION TRIDIAGONAL MATRICES
REAL A(N, 4, NUMCOL)., AOLDIN. ¢, NUMCOL!
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CIMENSION STEADY-STATE TI

REAL SSTI (NUMCOL)

DIMENSION SEMI- INFINITE SOLUTION TIME VECTOR

REAL TSIS (NUMCOL}

CIMENSION GEOMETRY VECTOR OF DROPLET HEIGHT

REAL DEL (NUMCOL)

DIMENSION SURFACE FLUX VECTOR

REAL FLUX (NUMNOD)

DIMENSION LAST SURFACE FLUX VECTOR

REAL OLDFLX (NUMNOD)

DIMENSION SURFACE TEMPERATURE VECTOR

REAL T (NUMNOD)

DIMENSION THE BEM FORCING FUNCTION TO BE INTEGRATED OVER
REAL FRCFNC (NUMBET, NUMNOD)

DIMENSION THE BEM WEIGHT TENSOR USED FOR PRECALCULATED VALUES
REAL W{NUMNOD, NUMNOD. 10}

DIMENSION THE VECTOR TO STORE DATA FOR SECOND BEM CALCULATION

REAL PREDU (NUMNOD)}
DIMENSION THE VECTOR OF SATURATION PRESSURES OF WATER AS FUNCTION OF TEMP.

REAL PSAT(0:100)

DIMENSION THE VECTOR OF THE HFG/VFG RATIO FOR WATER AS FUNCTION OF TEMP.

REAL HVFG(0:100)

DIMENSION THE VECTOR OF FLAGS FOR INITIALIZATION OF TEMPERATURES OF COLUMNS
CHARACTER*1 NFTIME (NUMCOL)

DIMENSION THE VECTOR OF TIMES TO OUTPUT THE DATA (.1, .2,..., 3.9, 4., 5., 6.,...,
REAL DATTIM(50}

P Tl R R R AR R A DR A L A L A

2esesnesseseERReESTRRERTRCREROEY

READ IN TIMES TO OUTPUT DATA (THE NUMBER OF ELEMENTS MUST MATCH THE REAL STATEMENT)
DATA DATTIM/ 1., S., 10., 20., 30./

..... READ IN PSAT TABLE
DATA PSAT/.006109,

+~ .006567, .0070S6. .007577, .008131, .008721,
. .009349, .010016, .010724, .011477, .012276,
+ .013123, .014022, .014974, .015983. .C170S1.
- .018181, .019376, .020640, .021978, .02329,
. .02487, .0264S5, .02810, .02985, .01169,
. .03363, .03567, .03782, .04008, .04246.
. .04496, .04759, .0S034, .0S324, .0S5628,
.« .05947, .06281, .066€32, .06999, .07384,
. .07786, .08208, .06649, .09111, .09593,
+ .10098, .10624, .11175, .11749, .12349.
. .12975., .13628, .14309, .15019, .157S8,
.+ .16529, .17331, .18166, .1903€, .19940,
. .20881, .21860, .22877, .23934., .2503.

. L2617, .2736, .2859, .2906, .lae,
- .3256, -3399, .1546, L3699, .lsse,
- .4022, .4192, L4368, .4850, .4739,
. 4934, .S136, .5345, .$560, .5783,
- 6014, .6252, L6498, L6782, L7014,
. .7284. L7564, .78%2, .Bl49, -8455,
. .8771, . 9097, .9413), L9778, 1.01328/

. 12.9767. 13.8792, 14.835S, 15.8487, 16.9224.
. 16.0581, 19.2596, 20.5308. 21.8733, 23.2915,
. 24.7897, 26.369%4, 28.0)69. 29.7915, 31.644S,
. 33.5952, 35.6474, 137.8062, 40.0786. €2.4658,
. 44.9764, 47.6111, 50.3778, 53.2821, $6.3274.
. 59.5199, 62.8685, €6.3741. 70.0449, 73.0911,
« 77.9136. $2.1186, 86.5191, 91.1178, 95.9191,
. 100.932, 106.171, 111.638, 117.334, 123.281.
. 129.479, 135.931, 142.658, 149.666, 156.964,
. 164.5S1, 172.439, 180.646, 189.182, 198.047.
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. 207.
- 258.
- 320.
+ 394.
- 481.
+ 583.
+ 703.

271, 216.823, 226.778, 237 173, 147.3%%.
§77. 270.378, 282.332, 294.671, 307.497,
763, 334.509, 348.725, 361.464, 378 .665,
€31, 410.756, 427.570, 444.927, 462.966,
498, $00.734, 520.567, $40.948, 562.086,
816, 606.207, 629.419. 653.204, 677.868,
116, 729.257, 756.202, 7831.711, 812.178,
662, 871.739, 902.69S, $34.901, 967.472,

841.
1001.597, 1035.943, 1071.804, 11008.163, 1146.068,
1104.769, 1224.430, 1265.227, 1307.048. 1349.996/

INPUT USER VARIABLES

PRINT

READ

=, *INPUT TEND IN S:’
(6.+) TEND

PRINT +, ‘INPUT VO IN MICROLITERS:®

READ
Vo -

(6.*) VO
vo * 1E-09

PRINT *, ‘' INPUT BETAO:"

READ

(6,°) BETAO

PRINT *, °INPUT THE GEOMETRY MODEL DESIRED, A OR B:’

READ

(6,*) GEOMOD

IF (GEOMOD .EQ. 'B’') THEN
PRINT *., ’'INPUT THE INITIAL CONTACT ANGLE THETAC IN DEGREES:’
PRINT *, 'IT MUST BE »>e THE MODEL A INITIAL ANGLE: °, CTHETA{(BETAC) °* (180. /PI)

READ (6,*) THETOD

END IF
PRINT ¢, ‘INPUT TSO IN C:°'
READ (6.°*) TSO
PRINT ¢, 'INPUT TCOIL IN C (475-650; °
READ (6,°*) TCOIL
PRINT <+, ’INPUT NEGRAT. RATIO USED TO STOP MARCH RACE IN TIME (e.g. 0.01}:'
READ (6.°) NEGRAT
PRINT *, ‘INPUT ROOT NAME OF OUTPUT FILES -- 6 CHARS (e.g. 2runoi}:’
PRINT *, ‘NAME OF MAIN DROPLET PARAMETERS IS (FILNAM . dat)’
PRINT *, ‘NAME OF SOLID SURFACE TEMPERATURES AND FLUXES IS (FILNAM.out)'’
PRINT *, 'NAME OF SPATIAL DROPLET SURFACT TEMPERATURES AND FLUXES IS (FILNAM.ins)'
PRINT ¢, 'NAME OF SPATIAL DROPLET MEIGHT AS FUNCTION OF TIME IS (FILNAM.geo)'
PRINT *., 'NAME OF CUMULATIVE ENERCY TRAMSFERS IS FILNAM.bal)’
PRINT *. °GIVE OUTPUT FILE NAME INSIDE SINGLE QUOTES IF IT HAS ILLEGAL CHARACTERS'
READ (6.°) FILNAM
PRINT *, ‘INPUT THE NUMBER OF TIMES TO OUTPUT THE SPATIAL DATA (INTEGER):'
READ (6.°) NDATT™
PRINT *, 'INPUT THE TIMES TO OUTPIT THE SPATL SATA . 1..2,. . .3.9.4..5..... . TEND) :
D0 99 L « 1, NDAT™M
READ (6.*) DATTIM(L)
TONTINUE

CONCATENATE THE REQUIRED OUTPUT PIlLE RAMES

FILNA

1 = FILNAM//' dat’

FILNAZ « PILNAM//* out’
FILNA3 o FILNAM//® .1D8°
FILNAG » FILNAM, /" geo’
FILNAS o FILNAN, /' Dal’

PEN
ZPEN
ZPEN
et -
2PN
oren

FILES FOR OCTPUT OF RESULTS
(41, PILE o PILMAL)
‘42, PILE o FILIAZ)
(43, FILE o FILMAY!
‘46, FILE = FILMMG;
(45, FPILE « FILMAS)

INITIALIZE FLAGS
TSFLAG » "0
TRNBGN - 0
ETLAS « "0
TRFLAG = " O°
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REMFLG = " 2°

jof CONVERT TO RADIANS
THETAO = (PI / 180.) ¢ THETOD
THETAR = (PI / 180.) * THEIRD

/ASSUMING MODEL A THE INITIAL THETAA (DEG)» ', CTHETA(BETAO} * (180. / PI)

PRINT *,

C....n SET VOLUME TO INITIAL VOLUME
vV s V0

C..... CALCULATE THE INITIAL RADIUS

RADO = BETAO * (6. * VO / PI) ** (1. / 3.) / 2.
RADIUS = RADO

IF (GEOMOD .EQ. ‘A’)} CALL UPGEOA(V, RADG, NUMCOL, DEL)
IF (GEOMOD .EQ. ‘B’) THEN
IF (THETAS .LT. CTHETA(BETAO)) THEN
PRINT *, ‘FOR GEOMETRY MODEL B, THETAC MUST EXCEED THE INITIAL THETA FOR MODEL A!’

sTOP
END IF
CALL UPGEOB(‘'1', V, BETAQ, VO, RADO, THETAC, THETAR, NUMCOL, DEL, RADIUS, THETA)
END IF
C..... WRITE THE INITIAL SHAPE TO THE GEOMETRY FILE (°.geo)

WRITE (44, ' (13G15.6)') TIME, DEL
PRINT ¢, °SHAPE DISTRIBUTION:
DO 100 J = 1,NUMCOL

PRINT *, DEL(J) °* 1000.

100 CONTINUE
PRINT ¢, '
PRINT *, ‘RADO: ", RADO * 1000., MM’
C..... ASSUME INITIAL (20C) DENSITY OF WATER IN VOLUME CALCULATIONS
RHOH20 = 998.2
C..... USE KL AND ALPHA VALUES AT AVERAGE OF TL AND TC FOR SEMI-INFINITE SOLUTION

PRINT *, "TSO:’, TSC, 'TL', TL

TC = SISTCITSO, TL)

PRINT ¢, 'THE SEMI-INFINITE SOLUTION BOUNDARY TEMPERATURE IS.'., TC
KLSIS o KL{({TL « TC) / 2.)

ALFSIS « ALPHALI!(TL « TC) / 2.)

S, SET RADIATIVE PARAMETERS
EPSF « .2261
SIGMA = 5.67E-08
F = .25%52
EPSILN » .84
FRADO = EPSF * SIGMA * (TCOIL « 2371 1S =« &
FRADS = F * EPSILN * SIGMA * !TCOIL . 27) 18] e ¢
HR = EPSILN * SIGMA * ((TSO . 27).1% - 1S ) «
. (TAMB + 273.15}) * ((TS0 « 273.15 - 18 ) *¢ 2 « (TAMB + 273 .15} e 2)

<o CALCULATE HCONV, FLUXO (INITIAL CONSTANT FLUX:
H = HCONVITSO)
HO = H « HR
FLUXO « -SOLVAP(TSO, HO, PRADS)
PRINT *, "FLUX0: ', FLOXO

.INITIALIZE DROPLET TIMES OF SEMI-INFINITE SOLUTION AND NPTIME FLAGS
-AND FIND THE NUMBER OF TRANSIENT COLUMNS INITIALLY BASED ON THE FOURIER NUMBERS
DO 110 J = 1, NUMCOL

TSIS(J) = (DEL{(J) ** 2) / (17 = ALFSIS®

0N

PRINT +, 'TSIS{'. J. '):°. TSISD
FO « ALFSIS * DTSHRY / DEL(J! ** 2
PRINT ¢, ‘FO(’, J. "):.', PO

IF (FO.LT.0.421) NTRANC = J
NFTIME(J) = ‘O’
110 CONTINUE
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z INITIALLY MUST USE SHORT TIME INTERVAL

DT = DTSHRT
CALL WEIGHT (10, NUMNOD. DT, RADO. W)

Co.ont CALCULATE THE FORCING FUNCTION AT TIME STEP 9.5
[ AND INITIALIZE THE SOLID SURFACE TEMPERATURES
KS = 1.297

FLUX0S = KLSIS * (T¢ - TL) / (PI * ALFSIS * DT / 2.) ** .5

DC 120 J = 1, NUMCOL

TW) = TC
FRCFNC(1, J) = - {FLUX05 - FRADO * FRAD (DEL (J), TCOIL) + FLUX0) / KS
120 CONTINUE
DO 130 J = NUMCOL + 1 . NUMNOD
T(J) = TSO
130 CONTINUE
C..... CALL BEM1 IN ORDER TO FIND T(J) AFTER ONE TIME STEP
CALL BEM1 (FRCFNC, W. DT, RADO. NUMNOD, NUMBET, NEGRAT, TSO, T, MEMORY. PREDU}
C.o.vnn MUST FIND CLOSE VALUES FOR THE INITIAL SSTI(J) VALUES FOR SS COLUMNS
C..... THE ONE-TERM LINEARIZED TAYLOR SERIES USED CANNOT CORRECT FOR BIG DELTA(SSTI(J))

DO 131 J =« NTRANC + 1, NUMCOL
SSTI(J) « TL
132 CONTINUE
SSTI(J) = SSTI(I) « 0.1

IF (LVFLUX(SSTI(J), PSAT, H, DEL(J), TCOIL, FRADO} - (T(J)-SSTI{J))/DEL(IY .GE. 0.J) GOTO 133
GOTO 132
13 CONTINUE
PRINT ¢, ’INITIAL §S SSTI(', J, "):. SSTI(J)

131 CONTINUE

C..... TIME STEP LOOP
140 CONTINUE
[N IF TIME »= TSHORT THEN WANT TO USE LARGER TIME STEP
IF {{(TIME + 0.0001) .GE. TSHORT) .AND. (TSFLAG .EQ. '0’)) THEN
DT = DTLONG
TSFLAG = °1°

CALL WEIGHT (2, NUMNOD. DT. RADO, W)
CALL RECONF {FRCFNC)
END IF

C....... STEP TIME (TO TIME CORRESPONDING TO END OF THIS ITERATION)
TIME = TIME - DT

T, RESET CUMULATIVE CHANGE IN VOLUME

oV = O.
C....... USE TRIDIAGONAL GAUSSIAN ELIMINATION FOR TRANSIENT COLUMNS
C.......ONLY IF THE HEAT WAVE HAS REACHED THE LIQUID-VAPOR INTERFACE

DO 150 J = 1. NTRANC
2. ... ..DEL{J} = 0 WAS ALREADY TAKEN CARE OF IN PREDICTOR LOOP

IF (TIME .GT. TSIS(J)) THEN
TRNBGN = " 1°

IF INFTIME(J) EQ.°0°) CALL INTCOLIS, N, TL. T(J). AOLD)
PRINT *., ‘INTCOL T(-. J. 't . TI3
NFTIME(J) « ‘1’
CALL LINBC(J, N. PSAT. MVFG. H. TCOIL. FRADO, DEL, AOLD, DZ. A)
CALL GAUSEL(J, N. DEL. DT. T. A, AOLD. D2}
[ < SAVE TEMPERATURES IN AOLD FOR NEXT ITERATION

DO 160 I = 1I.N
AOLD(l, ¢, J} e A(I. 4.
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DO 180 J = NTRANC « 1 , NUMCOL

FLUX{(J) « SOLVAP(T(J), HO. FRADS)
GOTO 180

END IF

IF (SSTI(J} .GE. 100.) SSTI(J) « 99.9
SSFI1 « LVFLUX(SSTI(J), PSAT. K. DEL(J). TCOIL. FRADO}
SSDFDT « DFDT(SSTI(J). PSAT, HVFG. H}
SSA = SSDFDT

SSB = SSFI - SSTI{J} * SSDFOT

KAVG « KL((T(S} - SSTIJ) a1

..USE KL VALUE AT AVERAGE TIMPEIRATIRE
FLOX(J) » -KAVG * EXPR - FRADC * FRAD(DELI(J!.

NPLUX « NH20(SSTI(Ji. PSAT, K

IIND IF
PRINT +. 'SSFLUX.‘, FLUX!(J}

EXPR « -(SSA * T(J! + SSB) ~ (SSA * DEL(J} « 1.
SSTOLD = SSTI(J)
PRINT ¢, °OLD SSTI('. J. ") -, SSTI(J)
SSTI(J) e DELIJ) * EXPR « T(J)
IF (SSTI!J).GT.99.9) THEM
SSTI!J) = 9%.9
KAVG = KL{(T(J) « 100.) / 23 )
QC » KAVG * (T(J} - 100.} / DELIJ}
FLUX(J) « QC - FRADO * FRAD(DEL:J!. TCCIL)
NPLUX « (QC - H * {100 - TAMB! » FRADO * (1
PRINT °. ‘SSTI RAS RRACMED 102 ' ' '
PRINT *, KAVG. TI(J!, DELIJ:. AC. FLIX:)
ELSE
PRINT *, °SSTI:!". J. ") °. $$TI(J}. 'DELTSSTI

163 CONTINUE
[P PRINT OUT TEMPERATURE COLUMN -- TRANSIENT
DO 170 I « N.1.-1
PRINT ¢, A(I, 4, J)
170 CONTINUE
PRINT *, ' *
Coveeaeens CALCULATE SOLID SURFACE FLUXES
TI = (A(N, 4, J} « AN -1, &, 3}) / 2.
IF (TI .GT. 99.9) THEN
NFLUX = (KL(100.) ¢ (A(N - 1, 4, J) - A(N, 4, J))
. FRADO *¢ (1. - FRAD(DEL(J)., TCOIL}))) / (HFG(100.
ELSE
NFLUX » NH20(TI, PSAT, H)
END IF
FLUX(J) = KLIT(J)) * (A(l, 4, J) - A(2, 4, 7)) / DZ
PRINT +, ‘BEM FLUX:', FLUX(J)
DVCOL « 18.0152 * DT * NFLUX ¢ PI * RADO ** 2 * (2.
DV = DV « DVCOL
PRINT *, ‘TRANSIENT COLUMN DVCOL:‘, DVCOL
) ELSE
[ USE THE SEMI-INFINITE SOLUTION FLUX
PRINT ¢, ‘HEAT WAVE STILL TRAVELLING IN COLUMN:
FLUX(J) = KLSIS ¢ (TC - TL) / (PI * ALFSIS * TIME)
PRINT =, 'SISFLUX(', J, ‘): ‘., FLUX{J)
END IF
150  CONTINUE
PRINT *, * ’
Covinnn UPDATE INTERFACIAL TEMPERATURES FOR STEADY-STATE COLUMNS

)

o J

IF SOLID IS DRY THEN USE SOLID-VAPOR BOUNDARY CONDITION
IF (DEL(J) .EQ. ©0.) THEN

DZ - K * {100.
* 18.0152)

-~ TAMB) «

FRADO * FRAD(DEL(J}, TCOIL)

J - 1.) / (NUMCOL ** 2 * RHOK20)

- FRADO * FRAD(DEL(J),

- FRAD(DEL(J). TCOIL)))

SSTI ()

™oin
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DVCOL-18.9152'5’!""!1.0’1'7!'!&00"2'(2.'J-l.)»‘NUHCOI."
DV = DV « DVCOL
PRINT *, ‘STEADY-STATE COLUMN DVCOL:’, DVCOL

180 CONTINUE
PRINT *, °THE LAST TRANSIENT COLUMN IS COLUMN: ‘. NTIRANC

CHECK FLUX RATIO OF OUTERMOST TRANSIENT COLUMN T0 SEE IF IT SHOULD BE SS
IF ((NTRANC .GT. 0) .AND. (TRNBGN .EQ. '1'}} THEN

J = NTRANC
FLUXR = (AN, 4, 3) - AN - 1, 4, J)) / (A2, 4, J) - A(1, ¢, J))

PRINT *, ‘FLUXR(', J, '}:', FLUXR

IF (FLUXR .GT. PERC / 100.) THEN
SSTI(J) = (A(N, 4, J) « AIN - 1, &, 1) / 2.

NTRANC = NTRANC - 1
IF (NTRANC .EQ. 0) SSTIME - TIME
END 1F
END IF

UPDATE THE VOLUME OF THE DROPLET
VaevV-DV
PRINT ¢, 'VOLUME:’, V ¢ 1E+09, '  MICROLITERS'
IF ((V .LT. 0.) .AND. (EVFLAG .EQ. "0°)) THEN
PRINT », THE COLUMN IS COMPLETELY EVAPORATED.'
DO 190 J = 1,NUMCOL
DEL(J) = O.
190 CONTINUE
EVFLAG = ‘1’
EVIIME « TIME
END IF
IF (EVFLAG .12. '0°) THEN
IF (GEOMOD .EQ. ‘B') THEN

<l

* RHCH20:

CALL UPGEOB(‘0°, V, BETAO, VO. RADO, THETAO, THETAR, NUMCOL, DEL. RADIUS, THETA)

IF ((THETA .LE. THETAR) .AND. (THFLAG .EQ. °*0'}) THEN
THTIME =« TIME
THFLAG = ‘1"
END IF
END IF
......... CALCULATE THE CURRENT BETA (BASED ON CURRENT V AND RADIUS)
BETA =« 2. * RADIUS / (6. = V / PI) »¢ {1./3.)
1F (GEOMOD .EQ. ‘A‘) THEN
CALL UPGEOA(V. RADO, NUMCOL. DEL!
THETA = CTHETA(BETA)
END IF
PRINT ¢, 'SHAPE DISTRIBUTION:'
DO 200 J = 1,NUMCOL
PRINT *, DEL(J) * 1000.
200 CONTINUE
PRINT ¢, *
END 1IF

....... CALCULATE SURFACT FLUXES FOR R > RADO
DO 220 J » NUMCOL « 1 , NUMNOD
FLUX(J) = SOLVAP(T(J). HO. FRADS)
220 CONTINUE

....... SAVE ALL SURPACE FLUXES IN OLDFLX ()
DO 230 J =« 1, NUMNOD
OLDFLX (J) « FLUX(J)
230 CONTINUE

CALL UPFFNC(‘1‘, FLOUX, FLUXO., NUMBET, WOMNOD. FRCFNC)
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WRITE DATA TO CUTPUT FILES '-'-o---c--n'-----'..--o-...-.-'v'------t-'--n..'.
PRINT *, ' '
PRINT =, ' J FLUX (J) T(JI) TI SSTI'
DO 201 J = 1, NUMCOL
TICONV = (AOLD(N, 4, J) + AOLD(N - 1, 4, ) / 2.
PRINT *, J. FLUX(J}, T(J). TICONV, SSTI(J)
201  CONTINUE
DO 206 L = 1, NDATTM
Ir (muo.-mnmu.)).:Q.nrruo.-'rmm.ox)) THEN
DO 207 J = 1, NUMNOD
IF (J .LE. 48) THEN
R = RADO * (J - .5) / 12.
ELSEIF (J .LE. 66) THEN
R« RADO * (4. » ({J -~ 48) - .5) / 6.)
ELSEIF (J .LE. 7%) THEN
R = RADD * (7. » ({3 - 66) - .5) / 3.)

ELSE
R = RADO * (10. + {{J - 75) - .S5))
END IF
WRITE (42, ' (6G14.6)°) TIME, R, R / RADO, T(J), FLUX(J), FRCFNC(1,J)
207 CONTINUE

DO 204 J = 1, NUMCOL
IF (TIME.LE.TSIS(J}) THEN
TICONV = TL
ELSEIF (J.LE.NTRANC) THEN
TICONV = (AOLD(N, 4, J) « AOLD(N - 1. 4. Jiy /2.

ELSE
TICONV  SSTI(J)
D IF
WRITE (43, '(G14.6, I4, 4Gl4.6)‘) TIME, J. FLUX(J), FRCFNC(1.J), T(J), TICONV
204 CONTINUE
END IF

206 CONTINUE
WRITE {44, ' (13G15.6)’) TIME, DEL

PRINT ¢, ’FLUXR: ‘, FLUXR
PRINT *, ‘VOLUME: ', V * 1E«09, 'TIME: °, TIME, * S§'
PRINT *, ‘DV: ‘, DV * 1E+09
PRINT ¢, ‘MEMORY: °, MEMORY
PRINT ¢, *BETA: ‘', BETA. ‘THETA: °, THETA ° (180. / PD)
....... APPROXIMATE CHECK OF OVERALL ENERGY BALANCE
TICAVG = 0.
TAVG = 0.
FAVG « 0.
DO 202 J = 1, NUMCOL
TAVG « TAVG ¢ T(J) * (2. ¢« J - 1.) / NOMCOL ** 2
FAVG « FAVG « FLUX{J) = (2. * J - 1.) / NUMCOL ** 2
CONDUC « CONDUC « DT ¢ FLUX{J) e PI * RADO ** 2 ¢ (2. * J - 1.) / NUMCOL ** 2
RADIAT = RADIAT « DT * FRADO * (1. - PRAD(DEL(J), TCOIL)) ¢ PI * RADO ** 2 * (2. *«J - 1.} / NUMCOL ** 2
IF (TIME.LE.TSIS(J)) THEN
TICONV = TL v
ELSEIF (J.LE.NTRANC) THEN
TICONV » (AOLD(N, 4, J) + AOLD(N - 1, 4. Jy) /2.
ELSE
TICONV « SSTI(J)
END IF
TICAVG = TICAVG + TICONV * (2. ¢ J - 1.) / NUMCOL ¢* 2
CONVEC « CONVEC « DT * H * (TICONV - TAMB! e PT ¢ RADO *¢ 2 * (2. * J - 1.) / NUMCOL ** 2
202 CONTINUE
LATENT » LATENT « DV * 990.2 ¢ HPFG (TICAVG)
MAXSEN = V * 998.2 * {(440. - 104.89%) * 1000.
SENSIB = SENSIB + DV © 990.2 * (440. - 104.89) * 1000.
PRINT *, *CONDUC: ‘', CONDUC. 'RADIAT: °. RADIAT
PRINT *, "CONVEC: ', CONVEC, °MAXKSEN: °, MAXSEN, ‘SENSIB: ', SENSIB

108



PRINT *, ‘TICAVG: '. TICAVG, 'TAVG: °. TAVG. LATENT: ', LATENT
PRINT *. "BALANCE: °, CONDUC » RADIAT - TONVEC - LATENT

WRITE (41, ’(10G14.6)') TIME, FLUXR, V * 1£9. DV * 1E9 / DT, MEMORY,
- BETA, THETA * (180. / PI). TAVG. TICAVG, FAVG
WRITE (45, ' (7G14.6)‘) TIME, CONDUC. RADIAT, CONVEC. LATENT, SENSIB, MAXSEN

IR R T AL AR A A A0 P T X T R R e L ]

CALL BEM1 (FRCFNC, W, DT, RADO, NUMNOD, NUMBET, NEGRAT, TS0, T, MEMORY, PREDU)

....... cessssssssessssNOW PREDICT THE NEXT FLUX VECTOR¢ssssss00tsscsttsssss
DO 240 J = 1, NTRANC
IF COLUMN EVAPORATED BEFORE STEADY-STATE THEN TRANSFER TO SS
1F (DEL(J) .EQ. 0.) THEN
NTRANC = J - 1
GOTO 250
END IF
IF (TIME .GT. TSIS(J)! THEN
CALL LINBC(J, N, PSAT. HVFG, H. TCOIL, FRADO, DEL, AOLD, DZ, A)

CALL GAUSEL(J, N, DEL, DT, T. A, AOLD. D2Z)

........... DO NOT SAVE TEMPERATURES IN AOLD FOR NEXT ITERATION
........... PRINT OUT TEMPERATURE COLUMN -- TRANSIENT
PRINT *, ‘THESE TEMPERATURES ONLY USED TO PREDICT FLUX()’
DO 260 I = N.1,-1
PRINT ., A(I, &, J)
260 CONTINUE

........... CALCULATE PREDICTED SOLID SURFACE FLUXES FOR R < RADO
FLUX(J) » KLIT(J)) = (Al1, 4, J) - Al2, 4, J)) / DZ - FRADO * FRAD(DEL(J}, TCOIL)
PRINT *., ‘BEM PREDICTED FLUX:', FLUXI(J}
ELSE
........... USE THE SEMI-INFINITE SOLUTION FLCX
FLUX(J) « KLSIS * (TC - TL. * (P! * ALFSIS ¢ TIME) *°* -.5 - FRADO * FRAD(DEL(J), TCOIL}
PRINT =, "SISFLUX(". J, R g% SR 4]
END IF
k11 CONTINUE
PRINT », * *

250 CONTINUE
. .CONTINUE PREDICTION CF FLUKES NOW N TNX STEACY-STATE MODE
DO 270 J « NTRANC « @I ., NUMCCL

.1F SOLID IS DRY THEM JUST SOLID-VAPCR BOUNTARY CONTITION
IF (DEL(J) .EQ. 0.@ THEM

FLUX(J) « SOLVAP(T!J). NC. FRADS,

GCTO 278
DD 17

IFP 'SSTI(J) GE 100 ) $SSTI Ji » 99 ¢

SSF1 « LVFLUX(SSTI!J). PSAT. N O€&1 TTTIL TGS

SSDFDT « DFUT(SETI J). PEAT. WVIG &

SSA « SSDFOT

$5B « SSFI - SSTI(J) * SSDFDT

EXPR = -(88A °* T(J) « SSB: $SA ° O O .

.DO MOT UPDATE TME STRADY-STATE LICID-VAPCE INTERFACIAL TEMPERATURE
SETEMP « DEL(J: * KXPR . T:2

17 (SSTEMP GT 99 9 THEM

RAVG o KLI(T'J) « 100 3

QC « EAVG * (T - 100 o 2
FLUXiJ) = QC - FRADO * FRAD °RL O ™oL
st

EAVG = KL{{TiJ) « S8TI(J)) - 2
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S OLD KAVG VALUE 300D ENOUGH

FLUX(J} « -KAVG * EXPR - FRADO * FRAD(DEL(J), TCOIL)

END IF
PRINT ¢, 'PREDICTED SSFLUX(', J. *1:'. FLUX(J)

270 CONTINUE

Coovnnns CALCULATE SURFACE FLUXES FOR R > RADO
DO 280 J « NUMCOL + 1 , NUMNOD
FLUX(J) = SOLVAP(T(J)., HO, FRADS)
280 CONTINUE

Covvnnnn AVERAGE FLUX AND OLDFLX TO GET FLUX AT CENTER OF CURRENT TIME INTERVAL
DO 290 J = 1,NUMNOD
FLUX(J) = (FLUX(J) + OLDFLX(J)) / 2.
290 CONTINUE

CALL UPFFNC('0’, FLUX, FLUX0, NUMBET, NUMNOD, FRCFNC)
CALL BEM2 (FRCFNC, W. NUMBET, DT, RADO, NUMNOD, TS0, T, PREDU)
IF ((TIME « 0.0001) .GE. TEND) GOTO 9999
GOTO 140
9999 CONTINUE
C..... PRINT OUT RESULTS
PRINT ¢, ‘TIME UNTIL THE DROPLET EVAPORATED = '. EVTIME, 'S’
PRINT ¢. 'TIME UNTIL QUASI-STEADY STATE WAS REACHED » ‘', SSTIME, 'S’

IF (GEOMOD .EQ. ‘B‘) PRINT *, 'TIME UNTIL THETA REACHED THETAR WAS « ', THTIME, 'S’

STOP
END

REAL FUNCTION ALPHAL (T)

... ALPHAL THERMAL DIFFUSIVITY OF WATER (M**2/§)

C..... USE FIFTH ORDER POLYNOMIAL TO APPROXIMATE ALPHA FOR WATER AS FUNCTION OF TEMPERATURE
REAL T
ALPHAL = .0000001 + (1.3S14 « .0051737 * T - ) 3096E-05 * T ** 2 + 3.9658E-07 * T ** 3
- - 1.863E-09 * T ** 4 + 1. 3S17E-11 * T *° S)
RETURN
END

SUBROUTINE BEMI (FRCFNC, W, DT. RADC. NUMNCD. NUMBET. NEGRAT, TS0. T. MEMORY, PREDU)

C..... PERFORM BOUNDARY ELEMENT INTEGRATION USING WEISHT TENSOR AND FORCING FUNCTION
C.....Us=sT - TSO
c..... UMAX = MAX ADDITION TO U AT TIME TO

INTEGER NUMNOD, NUMBET

REAL FRCTNC (NUMBET, NUMNOD), W(NUMNOD. NUMNOD, 10). T(NUMNOD). PREDU(NUMNOD)
REAL NEGRAT. TSO. DT. RADO, MEMORY

REAL TU{78)., UMAX, UTERMK

INTEGER I, J. K

CHARACTER*1 EXFLAG(78)

C..... U: ACCUMULATING TEMPERATURE DEPRESSION. UMAX MAGNITUDE OF LARGEST UTERMK:
C..... UTERMK: TERM IN BEM INTEGRATION;
C..... EXFLAG: FLAG -- °1° « NODE READY TO EXIT RECOLLECTION TIME LOOP

REAL WGHT

UMAX « 1.E-10
DO 400 J = 1,NUMNOD
T(J) = 0.
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PREDU(J} = 0.
EXFLAG(J} = ‘0°
400 CONTINUE
DO 410 K = 1,NUMBET
DO 420 J = 1,NUMNOD
UTERMK = 0.
DO 430 I = 1,NUMNOD
UTERMK =« UTERMK + WGHT(J. I. K, DT, RADO, W) * FRCFNCIK, I)
430 CONTINUE
0(J) = U(J) + UTERMK
{F (K.GT.1) PREDU(J) = PREDUWJ) UTERME
IF (ABS(UTERMK) .GT. UMAX) UMAX = ABS (UTERMK)
IF (ABS(UTERMK) / UMAX .LE. NEGRAT) EXFLAG(J} = '1’
420 CONTINUE
DO 440 J = 1,NUMNOD
IF (EXFLAG(J) .EQ. '0°) GOTO 410
440  CONTINUE
GOTO 450
410 CONTINUE
PRINT *, ‘NOT ENOUGH TIME STEPS IN THE INTEGRATION WERE USKD!!!’
STOP
450 CONTINUE
DO 460 J = 1,NUMNOD
T{J) = U(J) + TSO
460 CONTINUE
MEMORY = K * DT
SRINT *. ‘'THE NUMBER OF BEM TIME STEPS USED WAS: ‘. K
RETURN
END

SUBROUTINE BEM2 (FRCFNC. W, NUMBET. DT. RADO, NUMNOD, TS0, T, PREDU)
PERFORM BOUNDARY ELEMENT INTEGRATION USING WEIGHT TENSOR AND FORCING FUNCTION
CALCULATIONS ARE SHORTENED BY USING PREDU FROM BEM1

INTEGER NUMNOD, NUMBET
REAL FRCFNC (NUMBET, NUMNOD). W (NUMNOD, NUMNOD, 10}, T{NUMNOD) , PREDU (NUMNOD!)
REAL TSO, DT, RADO
REAL UTERMK
INTEGER 1. J. K
..... UTERMK: TERM IN BEM INTEGRATION
REAL WGHT
ONLY NEED TO RECALCULATE THE FIRNST TIME INTERVAL BACK IN TIME
K=l
DO 470 J » 1.NUMNOD
UTERMK = 0.
DO 480 I = 1,NUMNOD
UTERMK = UTERMK « WGHT(J, I. K. OT, RADO, W) * FRCPNC(K, I}
480  CONTINUE
T(J) = PREDO(J) « UTERMK « TSO
470 CONTINUE
RETURN
END

REAL FUNCTION CTHETA (BETA)

..... CALCULATE THE CONTACT ANGLE GIVEN BETA ASSUMING GEOMETRIC MODEL A (SEGMENT OF SPHERE)
REAL BETA., GAM

..... GAM: THICKNESS OF DROPLET AT APEX / RADO
GAM » (4./BETA ** 3 + (1. < 16./8ETA **6) °*°.5) °*° (1./3.)

- - (-4./BETA **3 ¢ (1. o 16./BETA **6) **.5) ¢° (1./73.)
CTHETA « ATAN(((1./GAM « GAM) **2 /4. - 1.) ** -.5)

RETURN

2o
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REAL FUNCTION CPA (T)
< ZPA CONSTANT PRESSURE SPECIFIC HEAT FOR AIR (J/KG-K}

c..... SE SECOND ORDER POLYNOMIAL TO APPROXIMATE CP FOR AIR AS FUNCTION OF TEMPERATURE
REAL T
CPA = 1003.4 + .031646 = T « 3.42868-04 * T ** 2
RETURN
END

REAL FUNCTION DFDT (TI, PSAT, HVFG, H)
C..... CALCULATE DERIVATIVE OF VAPOR-LIQUID FLUX WRT TEMPERATURE

REAL TI, PSAT(0:100), HVFG(0:100), H

REAL TAMB, TF. XA, PATM, LE23, COEFF, XTERM
C..... TAMB: AMBIENT TEMP: TF: BOUNDARY LAYER FILM TEMP; XA: AMBIENT MOLE FRACTION OF WATER;
c..... PATM: ATMOSPHERIC PRESSURE; LE23: LEWIS NUMBER 2/
C..... COEFF, XTERM: ALGEBRAIC EXPRESSIONS

REAL KL

TAMB = 25.

TF = (T1 « TAMB) / 2.

XA = 0.

PATM « 101325.

LE23 « .894
COEFF = .621924 * H v HFG(TI) / (CPA(TF) * LE23)

XTERM = (1. - XI(TI, PSAT)) °** 2
DFDT = (COEFF ¢ (1 - XA} * HVITI, HVFG) / (PATM * XTERM * (TI + 273.15)) + R) / KL(TI)

C..... CAN USE DFDT » H / KL(TI) AS A CHECK FOR CASE OF CONVECTION ONLY

RETURN
END

REAL FUNCTION FRAD (D, T}

C..... CALCULATE FRACTION OF RADIATIVE FLUX REACHING DEPTH D IN DROPLET
C..... FUNCTION IS A 2D CURVE FIT OF RADIATION STUDY RESULTS
REAL D, T
REAL 2. M, B
C..... D: DEPTH BELOW LIQUID-VAPOR INTERFACE (M}
C..... Z: DEPTH (MM)
C..... T. TEMPERATURE OF RADIATIVE KEATER COILS (C)
C..... FRAD: NORMALIZED RADIATIVE FLUX (FLUX/ [ (EPS*F)} *SIGMA® (T+273.15) **4])

Z =D * 1000.
IF (Z .LE. .04) THEN
M = 322.37 - 50492 * T « ).2645E-04 * T ** 2
8 0.
ELSEIF (Z .LE. .1) THEN
M+ 1042.3 - 2.7002 * T + 0018666 ° T °* 2
B e -61.573 o .25781 * T - }.6576E-04 * T ** 2 « 1 T732E-07 ¢ T ** 3
ELSEIF tZz .LE. .2) THEN
M e 3863.7 - 16.516 ¢ T + .0244%7 ¢ T ** 3 - 1.2)728-05 = T ** 3
B e -273. + 1.2587 ¢ T - .0019433 * T °* 2 » 1.0096E-06 * T ** 2
ELSEIF (Z . LE. .7} THEN
M - 4122.1 - 18.206 * T o 027637 = T °* 2 - 1 4230E-0%5 * T °* 3
B e -309.61 ¢ 1.5276 * T - 0034716 * T °° 2 » 1.3303E8-06 * T ** 3
ELSE
Ma $577.9 - 24.76 * T « .03770) ¢ T e 2 - 1 9493E-05 ¢« T °* 3
B e -1336. + 6.1609 ° T - 0095690 ° T ** 2 . $.02236K-06 * T °* )
END IF
FRAD = 1. / (M * 2 « B + 1.}
RETURN
IND

SUBROUTINE GAUSEL (J. N. DEL. DT. T. A. AOLD. DZ)
< UST TRIDIAGONAL GAUSSIAN ELIMINATION TO UPDATE TEMPERATURES IN DROPLET COLUMN
PARAMETER (NUMCOL = 12)
INTEGER J, N
AZAL DEL (NUMCOL). DT, TINUMCOL). A(12. 4. WUMCOL!, AOLD(12. 4, NUMCOL), D2
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510

REAL T2I. ALPHA. SAMMA
T22: CRANK - NICHOLSON EXPRESSION; ALPHA: THERMAL DIFFUSIVITY CF LIJUID:
GAMMA : CRANK-NICHOLSON CONSTANT
REAL ALPHAL
AfL, 1, 3) = 0.
A(l, 2. ) = .5
Al1, 3, J) = .5
AL, &, ) = T(J)
1.‘22-!71'/(2.'02"2)
mc-nmstmormMormmn-mcuonswm
GIVE A CONSERVATIVE (UPPER LIMIT) VALUE
PRINT *, 'C-N ALPHA(', J. ‘) ., 2. ¢ 1.TE-07 * TZ2
po 500 1 =2 , N - 1
ALPHEA = ALPHAL (AOLD(I, 4. Jh)
GAMMA » ALPHA * T2
A(X, 1, 3} = -GAMMA
AL, 2. J)-l.o!.'w
A(I. 3. J) = -GAMMA

AL, 4, J) = AOLD(I, 4. J)} ¢ GAMMA * (AOLDI(I - 1, 4 - 2. AOLD(I, 4, J) + AOLD(I + 1, &, I

CONTINUE

couenseseserertMEAT OF GAUSSIAN ELIHIKATIGI"""""""""

DO $106 I = 2,N
A(I, 2, J) = AL, 2, I - Al 1, Jy / AT -1 2, J) ¢ A(T -1, 3,
AMI, 4, 3) = A1, &, ) - Af3, D / Al - 1, 2, J) v A(I - 1. &, B

CONTINUE
AN, 4, J) = A(N, 4, 3y / AN, 2. D
DOSZOI-N-}.L.-I
A(I, 4, D) = (AL, 4. 3 - AlI, 3, O ¢ AT « 1, 4, I/ A(I, 2, O
CONTINUE
l'."l..l'."""""'.""'""'...l..'..Il'l'l'..'.. EX LR L) .
RETURN
END

REAL FUNCTION HCONV T

HOONV  EXPERIMENTAL CONVECTIVE HEAT TRANSFER COEFFICIENT (W/Mev2-K)
USE THIRD ORDER POLYNOMIAL FOR EXPERIMENTAL HCONV AS FUNCTION OF TSO
REAL T

HCONV = -42.348 « 1.3663 * T - .011498 * T e+ 2 o 3.1954E-05 ° T ** 3
RETURN

END

REAL FUNCTION HFG TI)

CALCULATE THE LATENT HEAT OF WATER 'J/KGi AS A FUNCTION OF TEMPERATURE
REAL TI

REAL T, Al, A2, A3, A4. AS, A6, LAMBDA

T o (647.27 - (TI » 273.18)) / 647.27

Al = .72241

A2 = 5.33402

Al = 8.97347

At = -11.93143

AS = -3.31206

A6 = 1.63257

m-kl"l'"(l./).l0&2'T""OOAJ'T"I.IOIOAA'TOAS'T"ZOA"T"]

HFG = LAMBOA * 2501000.
RETURN
- ]

REAL FUNCTION RV (TI. HVPG)

FONCTION TO GIVE HFG/VYG GIVEN TEMPERATURE

HV: RATIO OF LATENT HEAT TO SPECIFIC VOLUME CHANGE OF VAPORIZATION
REAL TI, HVPG(0:100}

INTEGER TSAT

REAL TVAL, HVA, V3
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TSAT = -1

TVAL = TI

IF (TVAL .GT. 100.) TVAL = 190.
550 CONTINUE

TSAT = TSAT ~ 1

IF (TSAT .LT. TVAL - 1.) GOTO 550
HVA » HVFG(TSAT) ¢ 1000.
HVB = HVFG(TSAT + 1) ¢ 1000.
LINEARLY INTERPOLATE HV
HV « HVA + (KVB - HVA) ¢ (TI - TSAT)
RETURN
END

SUBROUTINE INTCOL (J, N, TL, TC. AOLD)
..... CALCULATE TSIS(J), THE TIME ONTIL KEAT WAVE IN COLOMN J REACHES SURFACE AND
..... INITIALIZE TRIDIAGONAL MATRIX USING SIS SOLUTION TEMPERATURE PROFILE
PARAMETER (NUMCOL = 13)
INTEGER J, N
REAL TL. TC. AOLD(12, 4, NUMCOL)
REAL ERF
ERF: ERROR FUNCTION (FROM LINKED LIBRARY)
po6oo F=2, N-12 -
AOLD(I, 4, J) = (TL - TC) * ERF({I - 1.5) ¢ 17. **.6 / (2. * (N - 2.0)) + T€
§00 CONTINUE
ADJUST T1 AND TN IN ORDER TO GET CORRECT BOUNDARY TEMPERATURES
AOLD(1., 4. J) = 2. * TC - AOLD(2, 4, )
AOLD(N, 4, J) = 2. * TL - AOLDIN - 1, &, J)
RETURN
D

REAL FOUNCTION KL (T)
..... KL THERMAL CONDUCTIVITY OF WATER (W/M-K)
USE FIFTH ORDER POLYNOMIAL TO APPROXIMATE K FOR WATER AS FUNCTION OF TEMPERATURE

REAL T

KL = .56971 « .001754 * T - 4.0332E-06 * T **2 - 4.3732E-08 = T **3
- e 2.202E-10 * T **4 - 2.9455E-13 * T **5
RETURN

END

SUBROUTINE LINBC (J, N, PSAT, HVFG, H, TCOIL. FRADO, DEL. AOLD, DZ. A)
..... LINEARIZE THE VAPOR BOUNDARY CONDITION USING FIRST TERM OF TAYLOR SERIES
PARAMETER (NUMCOL = 12}
INTEGER J, N
PSAT(0:100), HVFG(0:100), H, TCOIL, FRADO, DEL (NUMCOL)
AOLD(12, 4, NUMCOL), DZ. A(12, 4, NUMCOL)
TIO, FIO, DFDTO, AA, BB
..... T10. FI0. DFDTO, AA, BB: PARAMETERS FOR TAYLOR LINEARIZATION OF LIQUID-VAPOR BC
REAL DFDT. LVFLUX
DZ = DEL(J) / (N - 2.)
PRINT », ‘DZ(’', J, *}:’, DZ * 1000., "MM’
TIO = (AOLD(N, 4, J) + AOLD(N - 1, ¢, J1} / 2.
PRINT *, 'TIO:‘, TIO, °T(' ., J, *):', (AOLD(1, 4, J) « AOLD(2, 4, J) / 2.
IF (TIO .GT. 99.9) TIO = 99.9
FI10 = LVPLUX(TIO, PSAT, H, DEL{J), TCOIL. FRADO}
DFDTC = DFDT(TI0. PSAT, RVFG, H)
AA « DZ * DFDTO
BB - DZ * (FI0 - TID * DFDTO}
A(N, 1, J) =« 1. - AA/ 2.
AIN, 2, J) = -1, - AN/ 2.
AN, 3, J) = 0.
AN, ¢, J) = BB

EEE
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€20

[$ 1]
€19

(A )

REAL FUNCTION LVFLUX (TI. PSAT.
FUNCTION TO CALCULATE FLOX AT LI
REAL TI. PSAT(0:100), H. D. TCOL.
REAL TAMB, TF, XA, LE2), COEFF.
TAMB: AMBIENT TEMP; TF: BOUNDARY

H. D. TCOIL. FRADO)

QUID-VAPOR INTERFACE

L. FRADO

XTERM, CONV, RAD

LAYER FILM TEMP; XA: AMBIENT NOLE FRACTION OF WATER:

LE23: LEWIS NOMBER * (2/3); COEFF. XTERM: ALGEBRAIC EXPRESSIONS;

CONV: CONVECTIVE HEAT TRANSFER;
REAL HFG, CPA, XI, FRAD, KL
TAMB = 25.

TF = (TI « TAMB) / 2.

XA = 0.

LE2) = .894

COEFF « .621924 * H * HFG(TI) /
XTERM « (XI(TI, PSAT) - XAl / {1
CONV = H * (TI - TAMB)

RAD = FRADO * (1. - FRADID, TCCI
LVFLUX = (COEFF * XTERM « CONV -
RETURN

END

REAL FUNCTION NH20 (TI, PSAT. H)

RAD: RADIATIVE HEAT TRANSFER

(CPA(TP) = LE23)
- XI(TI. PSAT))

L))
RAD} / KL{TI)

CALCULATE MOLAR FLUX AT LIQUID-VAPOR INTERFACE FOR TI < 100

REAL TI, PSAT(0:100}, H
REAL TAMB, TF, XA. LE23. MA. COE!
TAMB: AMBIENT TEMP: TF: BOUNDARY
LE23: LEWIS NUMBER " {2/3}: MA:
COEFF. XTERM: ALGEBRAIC EXPRESSI
REAL CPA., XI
IF (T! .GE. 100.) THEN
PRINT *, 'NH20 CALCULATION TRI
STOP
END IF
TAMB = 25.
TF = (TI « TAMB) / 2.
XA =« 0.
LE2) « .894
MA « 28.9669
COEFF « H / (MA * CPAITF! * LE2)

XTERM « (XI(TI. PSAT) - EA! ~ °1
NH20 = COEFF * XTERM

RETURN

END

SUBROUTINE RECONY (FRCTNC!
FIX THE PORCING PFUNCTION FOR XX
WARNING  GOOD OWMLY FOR DTSNORT »
REAL FRCPNC{100. 8}
INTEGER J, K
DC 610 J =« 1,70
D0 620 K = 1.4
FRCTNC (K. J. = (FRCPWC(10°E-
CONT INUT
D0 630 K « $.100
FRCTNC(K, J) « 2
SONTINUE
CONT INUE
RETURN
- ]

REAL FUDNCTION SISTC TS2 To

F¥. XTERM

LAYER FILM TEMP: XA: AMBIENT MOLE FRACTION OF WATER:
MOLECTULAR MASS OF AIR

ONS

LD FOR TI »e 100. ®'°

- XTI, PSATH!

SWITOR T STLONG
S L. DTLOMG e i 3. AMD TSHORT = 4. :':!'!t!

§ o . FRCYWC I0°K-4. 1! 2

SALCULATE THE SEMI- INFINITE 3CLITION ~TACT TOWERATURE OF DROPLET AND SOLID
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~.....ASSUMING :NITIAL TEMPERATURE OF SOLID IS CONSTANT IT IS ATTUALLY LIN '

REAL TS0, TL
REAL RHOS, CPS. Ks, RHOL, CPL. RADS, RADL, NUM, DEN
RHOS : DENSITY OF SOLID; CPS: SPECIFIC HEAT OF SOLID: KS: CONDUCTIVITY OF SOLID:
. RMOL: DENSITY OF LIQUID: CPL: SPECIFIC HEAT OF LIQUID;
RADS, RADL, NUM, DEN: ALGEBRAIC EXPRESSIONS

RADS = (RHOS * CPS * KS) ** .5
RADL = (RHOL * CPL * KLITL}) ** .S
NOM « TSO * RADS » TL * RADL

DEN = RADS + RADL
SISTC = NUM / DEN

RETURN

END

REAL FUNCTION SOLVAP (T, HO, FRADS)

[ CALCULATE THE FLUX FOR DRY SURFACE AT TEMPERATURE T
[~ SOLVAP IS POSITIVE OUT OF THE SURFACE, SOLVAP < 0
REAL T. HO, FRADS
REAL TAMB
C..... TAMB: AMBIENT TEMPERATURE
TAMB = 25.
SOLVAP =« HO * (T - TAMB) - FRADS
RETURN
END

SUBROUTINE UPFFNC (RLLDWN, FLUX. FLUXO. NUMBET. NUMNOD, FRCFNC)
Coo.ts UPDATE THE ARRAY OF TEMPERATURE GRADIENT FORCING FUNCTIONS
C..... THROW OUT THE OLDEST IF RLLDWN = ‘1°

CHARACTER*1 RLLDWN

INTEGER NUMBET, NUMNOD

REAL FLUX(78), FLUXO., FRCFNC{100, 78)

REAL KS

INTEGER I, J
C.oovnn KS: CONDUCTIVITY OF SOLID

KS = 1.297

IF (RLLDWN .EQ. °‘1'}) THEN

DO €50 I « NUMBET.2.-1
DO 660 J = 1, NUMNOD
FRCFNC(I, J} = FRCPNCII - 1, )

660 CONTINUE
€50 CONT INUE
END IF

DO €70 J =« 1, NUMNOD
FRCFNC(1, J) = - (FLOX{(J) « FLOUX0) / &S
€70 CONTINUE
RETURN
END

SUBROUTINE UPGECA (V, RADO. NUMCOL. JfL)
Co.... UPDATE THE HEIGHT OF THE DROPLET USING MODEL A’
PARAMETER (PI = 3.14159265350979)
REAL V, RADO, DEL{12). BETA
INTEGER NUMCOL
REAL GAM, R
C..... GAM: THICKNESS OF DROPLET AT APEX / RADC, R: NOMDIMENSIONAL RADIAL POSITION
PRINT *, * '
BETA = 2. * RADO / (6. * V / PI} ** (1./).)
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PRINT . 'BETA: *. 3ETA
GAM » (4./ BETA®*3 « (1. « 16./ BETA®®6) ** §) **(1./3.,
- (-4./ BETA®**3 & (1. + 16./ BETA**6) **.5) **(1./3.)

DO 700 J = 1,NUMCOL
R= (2. *J - 1.) / (2. * NUMCOL)
DEL(J) = ((1./GAM + GAM) **2 /4. - R **2) **.5 - (1./GAM - GAM) /2.
MAKE DEL() DIMENSIONAL
DEL(J} = RADO * DEL(J)
700 CONTINUE

RETURN

END

SUBROUTINE UPGEOB (L, V, B0, VO, RO, TO, TR, NUMCOL, DEL, R, THETA}
UPDATE THE HEIGHT OF THE DROPLET USING MODLE ‘B’
ALSO CALCULATE THE CURRENT CONTACT ANGLE THETA IN RADIANS
THIS SUBROUTINE WRITTEN BY SUSAN TINKER
AND TRANSLATED FROM QUICKBASIC TO FORTRAN BY GLENN WHITE
DEFINE COMMON BLOCK TO ALLOW SUBROUTINE UPGEOB TO KEEP VALUES OF CERTAIN VARIABLES STATIC
REAL VR, VL, SO, Z0, X0, A0, L1, L2, SR, AR, ZR, XR, RL, ZL, SL
CoMMON /GEOBBL/ VR, VL, S0, 20, X0, A0, L1, L2, SR. AR, ZR, xR, RL, ZL, SL
PARAMETER (PI = 3.14159265358979)
REAL V, BO, VO, RO, TO, TR, DEL(12), R, THETA
INTEGER NUMCOL
CHARACTER®L L
..... vesssneSECTION I - DETERMINATION OF INITIAL DROPLET Pi eseseneey
..... DEFINITION OF VARIABLES IN SECTION I
..... TO: INITIAL CONTACT ANGLE; INPUT BY USER
..... v0: INITIAL DROPLET VOLUME; INPUT BY USER
..... 80: D/D. WHERE De DROPLET DIAMETER BEFORE IMPACT
..... De MAX DROPLET DIAMETER AFTER IMPACT. INPUT BY USER
..... TR: RECEDING ANGLE; INPUT BY USER
..... V: ANY DROP VOLUME BETWEEN 0 AND VO, INPUT BY USER
..... RO: MAX DROPLET RADIUS AFTER IMPACT
..... 20: DISTANCE FROM CENTER OF INITIAL ARC TO R-AXIS
..... X0: RADIUS OF DISK PART OF DROPLET
..... S0: HEIGHT OF INITIAL DROPLET
..... DO: DISTANCE ON R-AXIS FROM X0 TO RPO
..... AQ: DISTANCE ON R-AXIS FROM RPO TO R
..... RPO: R-COORDINATE OF PO
REAL A, C, CL, DO, DR, D, E, F, GAM., G, RPO, RPR, RP, R1l, R2, RV, ROV
REAL SLP, S, T, U1, UR, U2, VA1, VB1, VCil. VD1, V1, VAR, VBR, VCR, VDR
REAL VA2, VB2, VC2, VD2, V2, X, XC, Y1, YR, Y2, ZC
INTEGER J
IF (L .EQ. "0’} GOTO 1500
CeaVO/ (PI * RO ** 2)
E s {3 * VO) / (PI * RO == 2}
1010 SO0 « (C « E) / 2.
20 = SO * {{1. / TANITO)} « SQRT(1. « (1. / TAN(TO}) ** 2)) ¢ TAN{PI / 2. - TO)
Y1l = (20 « S0)
X0 = RO - SO ¢ ((1. / TAN(TO)) « SORT(1. « (1. / TANITO}) °** 2))
Ul = (RO - X0} / Y1
VAL « (PI * X0 ** 23 * $0)
VBL « 2. * PI ¢ ((Y1 *¢ 3 / 3.) - (Y1 *< 3 / 3.) * (COS(ATAN(U) / SQRT(1. - Ul ** 2)))) ** 3)
VC1l = PI * Y1 ** 2 + X0 * (ATAM(UL / SQRT(1. - Ul ** 2))
. e (1. / 2.} * SIN(Z. * {ATAN(TU1 / SQRT{1. - U1l =+ 2)))))
VD1l o P * 20 = (RO ®* 2 - X0 ** 2)
V1l e« VAL « VBl « VC1 - VD1
IF ((V1 - VO) .GT. 1E-12) THEN
£ - SO
GOTO 1010
ELSEIF ((V0 - Vi) .GT. 1EB-12) THEN
C « S0
GOTO 1010
LLSE
GOTO 1020
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END IF
1020 AQ « SO0 / TAN(TO)
D0 = SO * SQRT{(1. + (1. / TAN(TO)} ** 2}
RPO = RO - AC
eevseEND SECTION [vwevececvevescoses
*SECTION II - CALCULATE VL AND VYReeesseevnsreantessttccrune
. RECEDING ANGLE: INPUT BY USER
. HEIGHT OF DROPLET AT RECEDING SHAPE
. DISTANCE ON R-AXIS FROM PR TO R
. R-COORDINATE OF POINT PR
; VOLDME OF DROPLET AT RECEDING ANGLE
. VOLUME OF DROPLET AT LENS SHAPE
. RADIUS AT LENS SHAPE IF NOT RO
. HEIGHT OF LENS
L1 = RO - SO / TAN(TR)
L2 = SQRT((SO / TAN(TR)) ** 2 + 50 ** 2)
IF (L2 .GE. L1) THEN
SR = (RO / TAN(TR)) * ((SQRT(1. « (TAN(TR}} ** 2)} - 1.)
AR = SR / TAN(TR)
ZR = RO / TAN(TR)
RPR = RO - AR
V'R-(l./6.)'PI'SR'(3.'ﬁ0"20$ﬂ"2)
VL = VR
SL =« SR
ZL = ZR
ELSE
SR = SO
AR = SR / TAN(TR)
RPR = RO - AR
DR « SR * SQRT(1. + (1. / TANITR)) ** 2)
ZR « (DR « AR} ¢ TAN(PI / 2. - TR}
XR « RO - DR - AR
YR = 2R +» SR
UR = (RO - XR) / YR
VAR =« PI * XR ** 2 * SR
VER o 2. * PI ¢ ((YR ** 3 / 3.) - (YR ee 3 7/ 3.) * (COS(ATAN(UR / SQRT(1. - UR *¢ 2)1)) ** 3)
VCR = P1 * YR ** 2 * XR * (ATAN(UR / SQRT{1. - UR ** 2})
. e {1. / 2.) * SIN(2. * (ATAN(UR / SQRT(1. - OR ** 2})})}
VDR =« PI * 2R * (RO ** 2 - XR ** 2}
VR « VAR - VBR + VCR - VDR
CL = RO - SO * ((1. / TAN(TR}) « SQRT(1. « (1. / TANI(TR}) ** 2}}
RL = RO - CL
ZL = RL / TAN(TR}

sonessveTsEaTReTRRREIERTRROTOEIOIETSY

SL = SO
VL « (PI / 6.) * SR * (3. ® RL ** 2 « SR *°* 2)
END IF
C.. . weeseesEND SECTION :!t.cc'o'.'t..o'-O'Qotu--o.--o'octt-o-t---to--.t"""'.."'-"-'-"t
C... +ee*SECTION III - CONFIGURATION FOR ANY VOLUME BETWEEN 0 AND VOreeoesvesce
1500 IFf (V EQ. VO) THEN
c. veee INITIAL CONFPIGURATION®®socsvsoosorestesssssoresssrsvnssnnttsccsses esccscsesseveve

DO 1001 J = 1. NUMCOL
X e RO * (2. *J - 1.} / (2. * WOMCOL}
IF (X .LE. X0) THEN
DEL(J) « SO
ELSE
DEL(J) = SORT((Z0 « $0) ** 2 - (X - XO) ** 2) - z0
Do IF
002 CONTINUE
% « RO
GAM « SO / (RO - XO)
GOTO 1000
END 1P
Ir (Vv .GT. VL) THEN
IFr (v .GT. VR) THEN
17 (L2 .GE. L1) THEN
SLP = (S50 - SR) / (AR - AO}
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1020

1040

1002

F = TR
G = TO
T= {(Fe+G / 2.
A= (AO » (1. / SLP) * SO} / (1. « (1. / SLP) * TAN(T}!}
S = A * TAN(T)
D = SORT(S ** 2 + A ** 2}
XC = RO -D - A
RP = RO - A
2C = (D « A} / TAN(T)
Y2 = {(ZC « 8)
U2 - (RO - XC) / Y2
VA2 = (PY * XC ** 2 * §)
VB2 = 2. * PI * (Y2 *+ 3/ 3.} * (1. - (COS (ATAN(U2 / SQRT(1. - T2 ** 21))) ** 3)
VC2 « PI ¢ Y2 ** 2 « XC * (ATAN(U2 / SQRT(1. - U2 e+ 2))
e (1. / 2.} * SIN(2. * (ATAN(U2 / SQRT(1. - U2 =* 2)))))
VD2 = PI ¢ ZC v (RO ** 2 - XC ** 2)
V2 = VA2 » VB2 + VC2 - VD2
IF ((v2 - V) .GT. 1E-12) THEN
G=T
GOTO 1030
ELSEIF {((V - V2)} .GT. 1E-12) THEN
F=T
GOTO 14030
ELSE
GOTO 1080
END IF
ELSEIF (L1 .GT. L2) THEN
F = TR
G = TO
T a (F+G) / 2.
§ = S0
A =S/ TANIT)
D = SQRT(S ** 2 « A ** 2)
XC = RO - D - A
RP = RO - A
ZC = (D « A) / TANIT)
Y2 = 2C+ S
U2 = (RO - XC) / ¥2
VA2 « PI ¢ XC ** 2 * S
VB2 « 2. * PI * (Y2 ** 3 / 3.} * (1. - {COS(ATAN(U2 / SQRT(1. - U2 ** 2)))) v 3)
YC2 & Y2 ¢+ 2 ¢ PI * XC * (ATAN(UZ / SQRT(1. - U2 ** 2))
e (1. / 2.) ¢ SIN{(2. * (ATAN(U2 / SQRT(1. - U2 ** 2))))}
VD2 « P1 + ZC ¢ (RO == 2 - XC ** 2}
V2 = VA2 « VB2 - VC2 - VD2
IF ((V2 - V) .GT. 1E-12) THEN
Gs=T
GOTO 1040
ELSEIF ((V - v2) .GT. 1E-12) THEN
r=-T
GOTO 1040
ELSE
GOTO 1050
EIND IF
ELSE
CONTINUE
IND IF
eevess e CONFIGURATION FOR VOLUME V » VReesecccssavavovoserecrrcosnsssccee
DO 1002 J = 1, NUMCOL
X « RO * (2. *J - 1.) / (2. * NOMCOL)
IF (X .LE. XC) THEN
DEL(J) = §
ELSE
DEL(J) = SQRT{(ZC » §) ** 2 - (X - XC) ** 2) - IC
BD Ir
CONTINUE
R = RO

ssevevecee
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SAM « S, .RC - XC!
ELSEIF (V .EQ. VR) THEN
DO 1003 J = 1, NUMCOL
X = RO ® {2. = J - 1.) / (2. * NUMCOL)
IF (X .LE. XR) THEN
DEL(J} « SR
ELSE
DEL{J) = SQRT((ZR « SR} ** 2 - (X - XR) ** 2) - 2R
END IF
1001 CONTINUE
R = RO
GAM = SR / (RO - XR)
ELSE
R1 « RL
R2 = RO
1100 RV = (R1 + R2) / 2.
§ = SO
A =« S / TAN(TR}
RP = RV - A
DeS * SQRT{1. + (1. / TAN(TR)) °** 2)
2C « (D + A) * TAN(PI / 2. - TR)
XC « RV - D - A
Y2 = 2C + S
U2 = (RV - XC) / Y2
VA2 « PI * XC ** 2 + §
VB2 « 2. * PI * ((Y2 ** 3 / 3.) - (Y2 *= 3 / 3.} * (COS(ATAN(U2 / SQRT(1. - U2 ** 2)))) e+ 3)
VC2 =« PI * Y2 e« 2 = XC * {(ATAN(U2 / SQRT(1. - U2 ** 2))
- + (1. /7 2.) = SIN(2. * (ATAN(U2 / SQRT(1. - U2 ** 2))})})
VD2 = PI * 2C * (RV ** 2 - XC ** 2)
V2 = VA2 + VB2 + VC2 - VD2
IF {((v2 - V) .GT. 1E-12} THEN
R2 = RV
GOTO 1100
ELSEIF ((V -~ V2) .GT. 1E-12) THEN
Rl = RV
GOTO 1100
ELSE
GOTO 1200
END IF
_____ seeesesCONFIGURATION FOR V « VR?ecessvcsasacsscesassossse
1200 DO 1004 J = 1, NUMCOL
X =« RO * (2. *J - 1.) / (2. = NUMCOL)
IF (X .LE. XC) THEN
DEL(J) = §
ELSEIF (X .LE. RV} THEN
DEL(J) o SQRT((ZC » S§) ** 2 - (X - XC} *+ 2} - 2C
ELSE
DEL(J) = O.
END IF
1004 CONTINUE
R = RV
GAM » S / (RV - XC)
END IF
ELSEI? (V .EQ. VL) THEN
*eeeoee sCONFIGURATION FOR V o VI 00eceeeesecvvvennessevsoesaveovssrrronancsennne
DO 1005 J = 1, NUMCOL
X « RO ® (2. *J - 1.) / (2. = NUMCOL)
IF (X .LE. RL) THEN
DEL(J) o SQRT((ZL + SL) ** 2 - X ** 2) - ZL
ELSE
DEL(J) = O.
END IF
1005  CONTINUE
R « RL
GAM « SL / RL
iLSE
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. ... esesvevsCONFIGURATION FOR
ROV a (V / ((PL / &.) *
RV = ROV * SIN(TR)

S =« ROV ¢ (1. - COS(TR})
ZC « ROV - S
DO 1006 J = 1,
X eRO® (2. 07 - 1.0 / (2.
IF (X .LE. RV) THEN
DEL(J) = SQRT({ZC + §)
ELSE
DEL(J) = 0.
D 1r
CONTINUE
R = RV
GAM = S / RV
END IF

(1.

NUMCOL

1006

1000 CONTINUE
CALCULATE THETA FROM GAM, THE

ve 2 - X *v2) -

W < YLteesvessecvecaveervonan

- COSITR}) *

3. *

= NUMCOL)

zc

THETA » ATAN(((1./GAM + GAM) °**2 /4. - 1.1 *v -.85)

RETURN
END

SUBROUTINE WEIGHT (NUMWTI, NUMNOD. DT. RADG. W)

PARAMETER (PI = 3.141859265350979)
INTEGER NUMWTI, NOUMNOD

REAL DT, RADO, W(78, 78, 10)

NUMWTI: NUMBEKR OF TIME STEPS TO BE PRECALCULATED

(SINITR)} ** 2 « (. =

SOS{TR)

e 2))) ==

esnecesPND SECTION 111.----.--.----.-"---'---o-.----..-.n'-n--'---"----

RATIO OF APEX TO DELTA(R) OF CURVED SURFACE

CALCULATE THE WEIGHT MATRIX W CAREFULLY FOR THE FIRST NUMWTI TIME STEPS
WARNING: GOOD ONLY FOR DTSHORT = 0.1 AND DTLONG = 1.0

REAL ALPHA, DTO, TO, CONST1. DRO, RO, R. ARGl., ARG2, ARG3, SUM

INTEGER I. J, K, L. LMAX

..... R: RADIAL POSITION: ARGl. ARGI. ARG)
..... SUM: INTEGRATION SUMMATION: L:
REAL ERF, BESIOE

. (FROM LINKED LIBRARY}

IF (DT.EQ.0.1) LMAX = 25
IF (DT.E£Q.1.0) LMAX « 250
ALPHA = S.79E-07

OT0 - DT
CONSTL = (4 * PI * ALPHA) ** - 3
DO 750 K « 1, NUMWTI

DO 760 I = 1,78
DO 770 J e 1.70

SUM = 2

IF (I LE &0) THNEM
DRO « RADC / 12
RO = RADO * (I - & . 13
ELEEIF (I LE 66} THEM
ORO « RADO / &

RO « RADO * (4 =« (.2 - &8
ELSEIF (1 LE 75! THES

ORO « RADO / )

RO = RADO * (7 o (.3 - 66
[ <% 1 4

ORO = RADO

RO = BADC * (10 =« .2 e M
oo 1T
IF (J LR a8 THNEM

R«BADG ¢ 1J - O i3

LLSEIF (J LB 66) THEM

ALPHA: THERMAL DIFFUSIVITY OF SOLID: DTO: RECOLLECTION TIME INTERVAL:
T0: RECOLLECTION TIME; CONST1: ALGEBRAIC EXPRESSION FROM GREEN'S FUNCTION;
DRO: DUMMY RADIAL POSITION INTERVAL. RO: DUMMY RADIAL POSITION;

GREEN'S FUNCTION ARGUMENTS:
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R s RADO ¢ ‘4. « ![{J - 48) - .5) ;8.
ELSEIF (J .LE. 75) THEN

R « RADO * (7. » {(J - &6) - .8) /3.
ELSE

R « RADO * {10. + {((J - 75} - .5))
END IF

IF (I .EQ. J) THEN

DO 780 L = 1,LMAX

T0 = (K -1+ L/ (1. * LMAX)) * DTO

ARG1 » R * RO / (2. * ALPHA * TO)

ARG2 = (DRO / 2.) / (4. * ALPHA = TO} ** .S

780 SUM = SUM + TO ** -1 * BESIOE(ARGl) * ERF (ARG2)
W(J, I, K) =« R ® SUM * DTO / (1. * LMAX)
PRINT *, J, I, K. W(J, I. K

ELSE

DO 790 L = 1,LMAX

TO = (K -1 « L/ (1. * LMAX)) * DTO

ARGl = R * RO / (2. * ALPHA * TO)

ARG3 = -(R - RO) ** 2 / (4. * ALPHA ° TO)

790 SUM = SOM + TO *+ -1.5 * BESIOE(ARG1) * EXP (ARG3)
w(J, I. K) -CONSTI'RO'DRO'SW'MO/ (1. * LMAX)
END IF

770 CONTINUE
760 CONTINUE
750 CONTINUE

RETURN

END

REAL FUNCTION WGHT(J, I, K, DT, RADO. W)
C..... FUNCTION TO GIVE THE PROPER WEIGHT FUNCTION VALUE
C..... WARNING: GOOD ONLY FOR DTSHORT = 0.1 AND DTLONG = 1.0 !!!
PARAMETER (PI e 3.14159265358979)
INTEGER J, I, K
REAL DT. RADO, W(78. 78, 10)
REAL ALPHA, DTO, TO, CONST1, DRO, RO, R, ARGl, ARG2, ARG3
INTEGER NUMWTI
C..... ALPHA: THERMAL DIFFUSIVITY OF SOLID; DTO: RECOLLECTION TIME INTERVAL;
C..... T0: RECOLLECTION TIME; CONST1: ALGEBRAIC EXPRESSION FROM GREEN'S FUNCTION;
DRO: DUMMY RADIAL POSITION INTERVAL: RO: DUMMY RADIAL POSITION;
.. R: RADIAL POSITION; ARG1. ARG2, ARG): GREEN'S FUNCTION ARGUMENTS;
. NUMWTI: NUMBER OF TIME STEPS TO BE PRECALCULATED
REAL ERF, BESIQE
C..... ERF: ERROR FUNCTION; BESIOE: EXPONENTIAL BESSEL FUNCTION I0(ARG) X EXP(-ARG)
C..... {(FROM LINKED LIBRARY)
IF (DT.EQ.C0.1) NUMWTI « 10
IF (DT.EQ.1.0) NUMWTI = 2
IF (K.LE.NUMWTI) THEN
WGHT = W{J, I, K)
RETURN
END IF
ALPHA = 5.79E-07
DTO « DT
COMST1 = (4 * Pl * ALPHA} °** -.9
TO = (K - .S) ¢ DTO
IF (I .LE. 48) THEN
DRO = RADO / 12.
RC = RADO = (I - .S) / 12.
ELSEIF (I .LE. 66) THEN
DRO = RADO / 6.
RO = RADO * (4. « ((I - 48) - S} / 6
ELSEIF (1 .LE. 75) THEN
DRO = RADC / 3.

RO « RADO * (7. » ((I - 66) - 81 / 3} !
ELSE
DRO = RADO
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RO = RADO * .20. « {{I - 7S) - .5}
END IF
IF (J .LE. 48) THEN
R » RADO * (J - .5) / 12.
ELSEIF (J .LE. 66) THEN
R=RADO * (4. + ((J - 48) - .5} / 6.)
ELSEIF (J .LE. 75) THEN
R=RADO * (7. + ((J - 66) - .5) / 3.}
ELSE
R = RADO * (10. + ({(J - 75) - .5))
END IF
ARGL « R * RO / (2. * ALPHA * TO)
IF (I .EQ. J) THEN
ARG2 = (DRO / 2.} / (4. * ALPHA ¢ TO) ** .5
WGHT = R * TO *+ -1 * BESIOE(ARG1) * ERF(ARG2) * DTO
ELSE
ARG3 = -{R - RO) ** 2 / (4. * ALPHA * TO)
WGHT « CONST1 * RO * TO *+ -1.5 * BESIOE(ARG1) * EXP(ARG3) * DRO * DTO
END IF
RETURN
END

REAL FUNCTION XI (TI, PSAT)
FUNCTION TO GIVE XI GIVEN TEMPERATURE
XI: MOLAR FRACTION OF WATER VAPOR
REAL TI. PSAT(0:100)
INTEGER TSAT
REAL TVAL. XA, XB
TSAT » -1
TVAL = TI
IF (TVAL .GT. 100.) TVAL = 100.
900 CONTINUE
TSAT = TSAT + 1
IP (TSAT .LT. TVAL - 1.) GOTO 9%00
XA = PSAT(TSAT) / 1.0132%
XB = PSAT(TSAT + 1) / 1.01325
..... LINEARLY INTERPOLATE XI
XI = XA + (XB - XA) * (TI - TSAT)
RETURN
END
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Appendix C Material Properties as a Function of Temperature
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FIGURE 50
Molar Fraction of Water Vapor at Liquid-Vapor Interface x; vs. Temperature
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FIGURE 51
Ratio of A/v¢g for Water vs. Temperature
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y = 1.3514 + 5.1737e-3x - 3.3096e-5x"2 + 3.9658e-7x*3 - 3.86300-9x*4 + 1.3517¢-11x*5

1.7
RA2 = 1.000
1.6
‘.‘ o
~
<
3 1.5+
~
w -
‘-
1.4 9 Linear: y = 1.3757 + 3.3220e-3x R*2 = 0.983
1.3 hd L] T I L4 v L | v
0 20 40 60 80 100
T (C) :
FIGURE 53

Thermal Diffusivity of Water aj vs. Temperature
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TABLE 2
Thermodynamic Properties of Saturated Water [23]

: 3 (1" g mo"a) (1" Vg) (mxf j ) (JE ) (m/gMg)
C MPa m ) m () mA
O e TRz TH0R- S0 T TS e
7100006567 [0.0064811] _1.0002 | 999.800 | 192577 |192.5760| 2493.0 | 12.9767
> T0.000705510.0069637] 10001 | 999.900 | 179889 |179.8880 | 24967 | 13.8792 |
310.0007577]0.0074779] 1.0001 | 999.900 | 168132 [168.1310] 2494.3 | 14.8355
2100008131 [0.0080247 | _1.0001 | 999.900 | 157232 [157.2310] 24919 | 15.8487
£10.0008721 [0.0086070| 1.0001 | 999.900 | 147120 |147.1190| 2489.6 | 16.9224
—&10.0005349 [0.0092267] 10001 | 999.900 | 137734 |137.7330 | 2487.2 | 18.0581 |
< T0.0010016]0.0098850] 1.0002 | 999.800 | 129017 [129.0160] 2484.8 | 19.2596
310.0010724]0.0105838] _1.0002 | 999.800 | 120917 [120.9160| 2482.5 | 20.5308 |
516.0011477]0.0113269] 1.0003 | 999.700 | 113386 [113.3850] 2480.1 | 21.8733
I 70700012276]0.0121155] 1.0004 | 999.600 | 106379 [106.3780| 2477.7 | 23.2915
137 10.0013123[0.0129514] 1.0004 | 999.600 | 99857 | 99.8560 | 2475.4 | 24.7697
T570.0014022]0.0138386| 1.0005 | 999.500 | 937684 | 93.7830 | 2473.0 | 26.3694
73700014074 |0.0147762] 1.0007 | 999.300 | 88124 | 86.1230 | 2470.7 | 28.0369
74 10.0015083]0.0157740] 1.0008 | 999.201 | 82848 | 82.8470 | 2468.3 | 29.7935
1500017051 |0.0168280] 1.0009 | 999101 | 77926 | 77.9250 | 24659 | 31.6445
16 ]0.0018181]0,0179433| 1.0011 | 998.901 | 73333 | 73.3320 [ 24636 | 33.5952 |
17 10.0019376]0.0191226] 1.0012 | 998.801 | 69044 | 69.0430 | 2461.2 | 35.6474
18 10.0020640]0.0203701] _1.0014 | 998.602 | 65038 | 65.0370 | 2458.8 | 37.8062 |
19 [0.0021975]0.0216876] 1.0016 | 998.403 | 61293 | 61.2920 | 2456.5 | 40.0786
20] 0.002339 | 0.023084 | 1.0018 | 998.203 | 57791 | 57.7900 | 2454.1 | 42.4658
21| 0.002487 | 0.024545 | 1.0020 | 9968.004 | 54514 | 54.5130 | 2451.8 | 44.9764
22| 0.002645] 0.026104| 1.0022 | 997.805 | 51447 | 51.4460 | 24494 | 47.6111
23| 0.002810] O. 1.0024 | 997.606 | 48574 | 48.5730 | 244T. !
24 | 0.002985 | 0.029460 | 1.0027 | 997.307 | 45883 | 45.8820 | 2444.7 [ 53.2823
251 0.003169 | 0.031276 | 1.0029 | 997.108 | 43360 | 43.3590 | 2442.3 | 56.3274 |
26 | 0.003363 | 0.033190 | 1.0032 | 996.810 | 40994 | 40.9930 | 2439.9 | 59.5199
27| 0.003567 | 0.035204 | 1.0035 | 996.512 | 38774 | 38.7730 | 2437.6 | 62.8685
28] 0.003782| 0.037325] 1.0037 | 996.314 | 36690 | 36,6890 | 2435.2 | 66.3741 |
29| 0.004008 | 0.039556 | 1.0040 | 996.016 | 34733 | 34.7320 | 2432.8 | 70.0449
30 0.004246 | 0.041905| 1.0043 | 995718 | 32894 | 32.8930 | 2430.5 | 73.8911 |
311 0.004496 | 0.044372 | 1.0046 | 995.421 | 31165 | 31.1640 [ 242B.1 | 77.9136
32| 0.004759 | 0.046968 | 1.0050 | 995.025 | 29540 | 29.5390 | 2425.7 | 82.1186
33| 0.005034 | 0.049682| 1.0053 | 994.728 | 28011 | 28.0100 | 2423.4 | 86.5191
341 0.0053247 0. 1. 994,431 | 26571 | 26,5700 | 2421.0 | 91.1178
35| 0.005628 | 0.055544 | 1.0060 | 994.036 | 25216 | 25.2150 | 2418.6 | 95.9191
36 | 0.005847 | 0.058692| 1.0063 | 993.739 | 23940 | 239380 | 2416.2 ] 100.832
37| 0.006281 | 0.061989 | 1.0067 | 993.345 | 22737 | 22.7360 | 24139 106.171
36 0.006632 | 0.065453 | 1.0071 | 992950 | 21602 | 21.6010] 2411.5] 111.638
30| 0.006999 | 0.069075] 1.0074 | 992.654 | 20533 | 205320 | 2409.1 | 117.334
40 | 0.007384 | 0.072874 | 1.0078 | 992.260 | 19523 | 19.5220 | 2406.7 | 123.281
41 0.007786 | 0.076842 1.0082 | 991.867 | 18570 | 185690 | 2404.3 | 129479
42]0.008208 | 0.081007| 1.0086 | 991.473| 17671 176700 | 24019 | 135.931 |
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TABLE 2 (Continued)

Thermodynamic Properties of Saturated Water [23]

130

~Tr X T0°3vT | Mo | 10°3vg| Vg hig higig
©| Pa) m*3kg) | (kgm*3) | (M"3kg) | (M"3kg)| (ki/kg) | (ki/m"3)
7510.008649 | 0.085350 | 1.0090 | 991.080 | 16821 | 16.8200 | 2399.5] 142.658
221 0.009111] 0089919 1.0095 | 990.589 | 16018 16.0170 | 2397.2 | 149.666
—4570.000503 | 0.094676 | 1.0099 | 990.197 | 15258 | 15.2570 | 2394.8 | 156.964
961 0.010098] 0.099660 | 1.0103 | 989.805 | 14540 14.5390 | 239241 164.551
471 0.070624 | 0.104851 | 1.0108 | 989.315| 13861 | 13.8600 | 2390.0 | 172.439
2510011175 0.110289| 1.0112 | 988924 | 132181 13.2170 | 2387.6 | 180.646
25 0017749 0115064 | 1.0117 | 986,435 | 12609 | 12.6080 | 23852 189.182
0012349 0121875 1.0121 | 988.045 | 12032 | 12.0310 | 2382.7 | 198.047 |
—5710.012975] 0.128053 | 1.0126 | 987.557 | 11485 11.4840 [ 2380.3 | 207.271
£51 0013628 0.134498 | 1.0131 | 987.069 | 10968 | 10.9670 | 2377.9 | 216.823
531 0014309] 0.141219] 1,0136 | 9686582 | 10476 | 10.4750 | 2375.5 | 226.778 |
241 0015019] 0.148226] 1.0141 | 986.096 | 10011 | 10.0100 | 2373.1 | 237.073
55 0.015758 | 0.155519] 1.0146 | 985.610 95681 ©.5670 | 2370.7 | 247.800
61 0016529 | 0.163120] 1.0151 | 965.125| 9149 | 9.1480 | 2368.2 | 258.877
57| 0.017331 ] 0.171044| 1.0156 | 984640| 8751] 8.7500 | 2365.8 | 270.378
58| 0.018166] 0.179264 | 1.0161 | 984.155| 8372 | 8.3710 | 2363.4 | 262.332 |
59] 0.019036] 0.187871 | 1.0166 | 983671 [ 8013] 8.0120] 23609 | 294.671
60] 0.019940] 0.196792 | 1.0172 | 983.091 | 7671 | 7.6700 | 23585 | 307.497
B1] 0.020881 | 0206079 | 1.0177 | 982608 | 7346 7.3450 | 2356.0 | 320.763
62| 0.021860 | 0.215741| 1.0182 | 982.125 | 7037 | 7.0360 | 2353.6 | 334.509
63| 0022877 | 0225778 1.0188 | 981547 | 6743 | 6.7420| 2351.1] 348725
64| 0.023934 | 0.236210] 1.0194]980969| 6463 6.4620 | 2348.7 | 363.464 |
65| 0.02503| 0.24703| 1.0199]980488| 6197 6.1960 | 2346.2 | 378.665
66| 0.02617| 0.2% 10205 | 979912 | 5943 | 5.9420 | 2343.7 | 394.431
67| 002736 0.27002]| 1.0211[979.336| 5701 57000 | 2341.3| 410.756 |
66| 002859 | 0.28216| 10217 | 978.761 | 5471 54700 | 2338.8 | 427.570 |
69| 0.02986] 0.29470| 10222 | 978282 | 5252| 52510 | 2336.3 | 444.927
70| 0.03119| 0.30782| 10228 977.708| 5042| 50410 [ 2333.8 | 462.966
71| 003256 0.32134| 102341 977.135| 4843| 48420 | 23314 | 481438
72| 003399 0.33546| 10240 976563 | 4652| 46510 | 23289 | 500.734
73| 003546| 0.34996| 1.0247 | 975.895| 4470 | 4.4690 | 2326.4 | 520.567 |
74| 003699 | 0.36506| 10253 | 975324 | 4297 | 4.2960 | 2323.9 | 540.948
75| 0.03858| 0.38075| 1.0259 | 974.754] 4131| 4.1300| 2321.4] 562.086 |-
76| 004022| 0.39634| 10265] 974184 3973| 39720 | 23189 | 583.816
77| _0.04192] 041 10272 | 973520 | 3822| 3.8210 | 2316.3 | 606.
78] 0.04368| 043109 1.0278 | 972952 | 3677 36760 | 2313.8] 629.439
79[ _0.04550 | 0.44905]| 102851 972.290 | 3539| 3.5380| 2311.3] 653.284
80| 004739| 0.46770| 1.0291 | 971.723 | 3407 | 3.4060 | 2308.8 | 677.868
81| 0.04934| 0.48695| 1.0298 | 971.062| 3281 | 3.2800 | 2306.2 | 703.116 |
[ 82| 0.05136| 0.50688] 1.0305] 970403 | 3160| 3.1590 | 2303.7 | 729.257
83| 0.05345] 0.52751| 10311 | 969.838 | 3044 | 3.0430 | 2301.1 | 756.202
B4 0.05560| 0.54873| 1.0318 | 969.180 | 2934 | 2.9330 | 2298.6 | 783.711
85| 005783| 0.57074| 10325 968523 | 2828| 28270 | 2296.0[ 812.178




TABLE 2 (Continued)
Thermodynamic Properties of Saturated Water [23]

1 - xi T0avi| mo | 105vgl vig | hig higig
C)| (MPa) mA mA3) | (m* )_S_;'Vsm“ )| (kg) | (k/m"3)]
"%% é.osou [ 0.53354 ] 1.0332) (967.867 2726 2.7250| 2233.5] 841662
87| 0.06252] 0.61702] 1.0339 | 967.212 2629 | 2.6280 [ 2290.9 | 871.739
88| 006498 | 0.64130| 10346 066.557 2536 | 2.5350 | 2288.3 902.695
89| 006752 | 0.66637 | 10353 | 965004 | 2446| 24450 | 22858 934.901
90| 007014 | 069223 10360 | 965.251 | 23611 2.3500] 228321 967.472
—g§1| 0.07284 | 0.71887] 1.0367 | 964.599 2278 | 2.2770 | 2280.6 |1001.597
93] 0.07564] 0.74651| 10375 ] 963 855 2200| 21990 | 2278.0 [1035.943
931 007852] 0.77493] 1.0382 | 963.206 | _2124] 21230 22754 1071.804
94| 008140] 0.80424] 1.0389 | 962.557 | _2052| 2.0510| 2272.8 |1108.163
95| 0.08455] 0.83444| 1.0397 | 961.816 | 1981.9 ] 1.98086] 2270.2 1145.323
0087711 0.86563| 1.0404 | 961.169 | 19150] 1.91396| 2267.6 |1184.

250008 080780 1 0412 960430 | 1850.8 | 1:64976 | 2264 [1224.430
98| 0.09433| 0.93006| 1.0420 | 959.693 [ 1789.1 | 1.78806 | 2262.3 [1265.227 |
99| 0.09778| 006501 1.0427 | 959.049 17299 | 1.72886 | 2250.7 | 1307.048
00T 0710135 1.00025| 1.0435 | 958.313 | 16729 | 167186 ] 2257.0 [1349.9%6
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TABLE 3

Thermal Properties of Saturated Water [16]

: ) rho"3) (J/kcpK) (W/k K) (algg/aé) (ale‘h;s) e
C (m* m 'm- m cm (m*2/s)
O e T — 277 | OSeu [Ts0E07 [TIe0ETe | T30
51275| 1.0001 | 999.900 4211 0.574 |1.363E-07 [1.363E-03] 1.363
—7 280 1.0002 | 999.800 | 4198] 0.582 }1.387€-07 1.387E03| 1387
721285 1.0005 [ 999.500 2189 | 0.590 |1.409E-07 |1.409E03 | 1.409
17 1290 1.0012 [ 998.801 2184 | 0.598 [1.431€07 |1.431E03| 1.431
551 295] 1.0022 | 997.805 4181 | 0.606 |1.453E-07 | 1.453E-03 1.453
571300| 1.0035 | 996.512 2179 0613 [1.472E-07 |1.472E-03 | 1.472
35 [ 305 1.0050 | 995.025 3178 0620 [1.491E-07 [1491E-03] 1.491
37310 1.0067 | 993.345 2178 | 0628 |1.513E-07 |1.513E-03 | 1.513
251375 1.0086 ] 991.473 | 4179 0634 1.530E-07 | 1.530E-03 1.530
27 1320] 1.0108 | 989.315 21801  0.640 | 1.548E-07 |1.548E-03 |  1.548
551 325] 1.0131 | 987.069 2180 0.645 |1.563E-07 |1.563E-03 | 1.563
57 (330 1.0156 | 984.640 2184 | 0.650 |1.578E-07 |1.578E03 | 1.578
62| 335] 1.0182 | 982.125 2186 | 0.656 | 1.506E-07 |1.506E03 | _ 1.596 |
671340 1.0211] 979.336 2188 | 0.660 |1.609E-07 | 1.609E-03 |  1.609
72 345 1.0240 | 976.563 4191 0.664 | 1.602E-07 | 1.622E-03 | 1622
77 1 350 | 1.0272 | 973.520 2195 0.668 |1.636E-07 |1.636E-03 | 1.636
B2 355| 1.0305] 970.403 2199 | 0671 | 1647607 |1.647E03 | 1.647
871360 1.0330] 967.212 | 4203 0674 |1.658E-07 |1.658E-03]  1.658
| 52 365 1.0375 | 963.855 2209 | 0.677 |1.669E-07 |1.669E-03 [  1.669
g7 1370| 1.0412] 960.430 2014 0.679 |1.678E-07 |1.678E-03 | _ 1.678
700 | 373[ 1.0435 | 958.313 2217 | 0.680 |1.683E-07 |1.683E-03 1.683
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Appendix D.1 Output Data: Effect of Shape Factor B
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BOTTOM SURFACE AVERAGED FLUX (kW/m*2)
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FIGURE 59 TIME (s)
Transient Area Averaged Solid-Liquid Flux: Runs 1-9 (Effect of o)
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Transient Upper and Lower Surface Averaged Droplet Temperatures: Run 1
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Appendix D.2 Output Data: Effect of Initial Volume V)
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FIGURE 74
Transient Area Averaged Solid-Liquid Flux: Runs 5, 10, 11 (Effect of V)
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Appendix D.3 Output Data: Effect of Initial Temperatures
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Appendix D.4 Output Data: Effect of Geometry Model
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Transient Area Averaged Solid-Liquid Flux: d) Run 5; f) Run 17; g) Run 20;
h) Run 18; i) Run 16;j) Run 19 (Effect of Droplet Geometry)
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Appendix E FORTRAN Code for Constant Heat Flux Model
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SLENN WHITE

C {301) 405-5334
< ADVISOR: MARINO DIMARZO (301; 405-5257
C MASTER'S THESIS -- UNIVERSITY OF MARYLAND AT COLLEGE PARK
C EVAPORATIVE COOLING WITH RADIANT HEAT INPUT
[ WRITTEN FOR NIST CENTER FOR FIRE RESEARCH
[+f
c SUDDEN PLACEMENT AND REMOVAL OF DISK HEAT SINK ON A SEMI-INFINITE SOLID
<
€234567
PROGRAM DISK
REAL RADO, TIME(24), TEVAP, T. TS0, XS. ALPHA. R, QD, QI. ARGI1, ARG2, ARG3
INTEGER 1., J
[P RADO: RADIUS OF WETTED AREA; TIME: TIME SINCE INTRODUCTION OF DISK
C..... TEVAP: EVAPORATION TIME: T: SURAFCE TEMPERATURE; TSO: INITIAL SURFACE TEMPERATURE;
C.o...- XS: CONDUCTIVITY OF SOLID: ALPHA: THERMAL DIFFUSIVITY OF SOLID:
Covnnn R: RADIAL POSITION; QD: DISK FLUX: QI: INITIAL FLUX;
C..... ARG1, ARG2, ARG3: ARGUMENTS TO SOLUTION INTEGRAL
Co...e SPECIFY VARABLES TO BE USED BY SUB QAGI
REAL EPSABS. EPSREL, RESULT. ABSERR. BOUND, WORK(S000)}, F
INTEGER INF, IER, LIMIT, LENW, INORK(1000), NEVAL, LAST
EXTERNAL F
COMMON ARGl, ARG2, ARG3
OPEN (30, FILE = ‘valdiskl.dat’)
C..... DEFINE PHYSICAL PARAMETERS
RADO = 2.673009E-3
TSO =« 130.
QD = 36534.
QI = 2578.
KS = 1.297
ALPHA = 5.79E-7
TEVAP = 31.5
C..... DEFINE THE TIMES TO BE USED
DATA TIME /.1, .2, .3, .5, 1., 2., 3., 4., 5., 10., 15., 20., 25., 30.,
- 31., 32., 33., 34., 35., 40., 45., S0., SS., 0./
C..... DEFINE VARIABLES NEEDED BY SUB QAGI (CMLIB LIBRARY) USED FOR CALCULATION OF SEMI-INFINITE INTEGRAL
BOUND = .00001
INF = 1
EPSABS = .001
EPSREL « .001
LIMIT = 1000
LENW = 5000
C.o.... DO LOOP FOR CALCULATING THE DIMENSIONLESS TEMPERATURE AS A FUNCTION OF R

DO 15 I = 1, 24
DO 10 J = 1. 78
IF (J .LE. 48) THEN
R = RADO * (J - .5) / 12.
ELSEIF (J .LE. §6) THEN
Rae RADO * (4. « ((J - 48) - .5} / &.)
ELSEIF (J .LE. 75) THEN

R = RADO * (7. « ((J - 68) - .S} / 3.}
ELSE

R = RADO * (10. « ((J - 78} - .S))
END IF

ARGL « R / RADO
ARG2 = (ALPHA * TIME(I)) ** .S / RADO
IF (TIME(I).LE.TEVAP) THEN
ARGY = 0.
ELSE
ARG) o (ALPRA * (TIME(I) - TEVAP)) ** .5 / RADO
END IF

156



CALL QAGI (F,BOUND.:NF.!PSAIS.SPSREL.RES’JL'.'.:\ISM.HEVM..!ER.LIHIT.LEN.LAST.!HORK.HGRK;
T « TSO - (QD + QI) e RADO * RESULT / KS
PRINT «, TIME(I}, J. T
WRITE (30, 5) TIME(D), J, R/ RADC, T
10 CONTINUE
15 CONTINUK
5 FORMAT (F8.S, IS, 2F15.6)
STOP
END

REAL FUNCTION F(X)

REAL X

REAL ARGl, ARG2, ARG3

REAL ERF, BESIOE

ERF: ERROR FUNCTION: BESJO, BESJL: BESSEL FUNCTIONS JO AND J1

(FROM LINKED LIBRARY)

COMMON ARG1, ARG2, ARG3

F = BESJO(ARGI °* X} * BESJ1(X) * (ERF(ARG2 * X) - ERFI(ARG3 * X)) / X
RETURN

END
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